Difference between revisions of "Exercise 2.3Z: xDSL Frequency Band"
m (Text replacement - "[File:" to "[File:") |
m (Text replacement - "[[Beispiele_von_Nachrichtensystemen" to "[[Examples_of_Communication_Systems") |
||
Line 28: | Line 28: | ||
''Hinweise:'' | ''Hinweise:'' | ||
− | *Die Aufgabe bezieht sich auf das Kapitel [[ | + | *Die Aufgabe bezieht sich auf das Kapitel [[Examples_of_Communication_Systems/xDSL_als_Übertragungstechnik|xDSL als Übertragungstechnik]]. |
− | *Informationen zum ''zyklischen Präfix'' finden Sie im Kapitel [[ | + | *Informationen zum ''zyklischen Präfix'' finden Sie im Kapitel [[Examples_of_Communication_Systems/Verfahren_zur_Senkung_der_Bitfehlerrate_bei_DSL|Verfahren zur Senkung der Bitfehlerrate bei DSL]]. |
Revision as of 13:51, 9 July 2020
Die Abbildung zeigt die Frequenzbandbelegung eines gebräuchlichen $\rm xDSL$–Systems:
- Im unteren Bereich befindet sich das ISDN–Band.
- Danach folgen zwei Bänder $\rm A$ und $\rm B$, die für Downstream und Upstream stehen.
- Über die Reihenfolge der beiden Bänder wird nichts ausgesagt. Dies ist die Fragestellung zur Teilaufgabe (2).
Weiter ist bei xDSL/DMT standardisiert, dass
- pro Sekunde $4000$ Rahmen übertragen werden,
- nach $68$ Datenrahmen jeweils ein Synchronisationsrahmen eingefügt wird,
- die Symboldauer wegen des zyklischen Präfix noch um den Faktor $16/17$ verkürzt werden muss,
- jeder Datenrahmen zu einem DMT–Symbol codiert wird.
Damit ist auch die Integrationsdauer $T$ festgelegt, die beim Empfänger zur Detektion ausgewertet wird, und gleichzeitig auch die Grundfrequenz $f_{0} = 1/T$ des hier betrachteten DMT–Verfahrens (Discrete Multitone Transmission) darstellt.
Hinweise:
- Die Aufgabe bezieht sich auf das Kapitel xDSL als Übertragungstechnik.
- Informationen zum zyklischen Präfix finden Sie im Kapitel Verfahren zur Senkung der Bitfehlerrate bei DSL.
Fragebogen
Musterlösung
- Bei ADSL2+ endet das Frequenzband wie in der Skizze angegeben bei $2208 \ \rm kHz$.
- Bei ADSL endet das Frequenzband bereits bei $1104 \ \rm kHz$.
- VDSL hat je nach Bandplan eine deutlich größere Bandbreite, wobei sich Upstream– und Downstream–Bänder jeweils abwechseln.
(2) Richtig ist der erste Lösungsvorschlag:
- Dem Upstream wurden die besseren (niedrigeren) Frequenzen zugewiesen, da sich ein Ausfall der wenigeren Upstream–Kanäle prozentual ungünstiger auswirkt als der Ausfall eines Downstream–Kanals.
(3) Ohne Berücksichtigung der Synchronisationsrahmen (nach jeweils $68$ mit Nutzdaten belegten Rahmen) und des Guard–Intervalls ergäbe sich für die Rahmendauer
- $$T = 1/(4000/{\rm s}) = 250 \ \rm µ s.$$
- Mit Berücksichtigung dieses Overheads ist die Symboldauer um den Faktor $68/69 \cdot 16/17$ kürzer:
- $$T = \frac{68}{69} \cdot \frac{16}{17} \cdot 250\, {\rm \mu s} \hspace{0.15cm}\underline{ \approx 232\, {\rm µ s}} \hspace{0.05cm}.$$
(4) Die Subträger liegen bei DMT bei allen Vielfachen von $f_0$, wobei gelten muss:
- $$f_0 = \frac{1}{T} \hspace{0.15cm}\underline{= 4.3125 \, {\rm kHz}}.$$
- Die Zeitfensterung entspricht nämlich der Multiplikation der cosinusförmigen Trägersignale mit einer Rechteckfunktion der Dauer $T$.
- Im Frequenzbereich ergibt sich damit die Faltung mit der si–Funktion.
- Würden die Systemgrößen $T$ und $f_0 = 1/T$ nicht aufeinander abgestimmt sein, so käme es zu einer De–Orthogonalisierung der einzelnen DMT–Kanäle und damit zu Intercarrier–Interferenzen.
(5) Ohne Berücksichtigung der ISDN/Upstream–Reservierung erhält man $K_{\rm max} = 2208/4.3125 \underline{= 512}.$
(6) Die unteren $276/4.3125 = 64$ Kanäle sind beim hier betrachteten System „ADSL2+” für ISDN und Upstream reserviert.
- Somit verbleiben $K_{\rm down} = 512 – 64\hspace{0.15cm} \underline{= 448}$ nutzbare Kanäle.
(7) Für die Bitrate gilt
- $$R_{\rm B} = 4000 \, \,\frac {\rm Rahmen}{\rm s} \cdot K \cdot b \hspace{0.05cm}.$$
- Daraus ergibt sich für die (mittlere) Bitbelegung pro Subkanal („Bin”):
- $${\rm E}\big [ \hspace{0.05cm} b \hspace{0.05cm}\big ] = \frac{R_{\rm B}}{ 4000 \, \, {\rm Rahmen}/{\rm s} \cdot K} = \frac{25 \cdot 10^6 \,\, {\rm bit/s}}{ 4000 \, \, {1}/{\rm s} \cdot 448} \hspace{0.15cm}\underline{= 13.95 \, \, {\rm bit}}\hspace{0.05cm}.$$