Difference between revisions of "Aufgaben:Exercise 1.2: Signal Classification"

From LNTwww
m (Text replacement - "[[Signaldarstellung/" to "[[Signal_Representation/")
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Signaldarstellung/Klassifizierung von Signalen}}
 
{{quiz-Header|Buchseite=Signaldarstellung/Klassifizierung von Signalen}}
  
[[File:P_ID341_Sig_A_1_2.png|right|frame|Vorgegebene Signalverläufe]]
+
[[File:P_ID341_Sig_A_1_2.png|right|frame|predetermined characteristics]]
Nebenstehend sind drei Signalverläufe dargestellt:
+
Three signal curves are shown on the Right:
*Das blaue Signal&nbsp; <math>x_1(t)</math>&nbsp; wird zum Zeitpunkt&nbsp; $t = 0$&nbsp; eingeschaltet und besitzt für&nbsp; $t > 0$&nbsp; den Wert&nbsp; $1\,\text{V}$.
+
*The blue signal&nbsp; <math>x_1(t)</math>&nbsp; is switched on at time&nbsp; $t = 0$&nbsp; and has the value&nbsp; $t > 0$&nbsp; den Wert&nbsp; $1\,\text{V}$.
*Das rote Signal&nbsp; <math>x_2(t)</math>&nbsp; ist für&nbsp; $t < 0$&nbsp; identisch Null, springt bei&nbsp; $t = 0$&nbsp; auf&nbsp; $1\,\text{V}$&nbsp; und fällt danach mit der Zeitkonstanten&nbsp; $1\,\text{ms}$&nbsp; ab. Für&nbsp; $t > 0$&nbsp; gilt:
+
*The blue signal&nbsp; <math>x_2(t)</math>&nbsp; is for&nbsp; $t < 0$&nbsp; equals zero, jumps at&nbsp; $t = 0$&nbsp; to&nbsp; $1\,\text{V}$&nbsp; and then falls down with the time constant&nbsp; $1\,\text{ms}$&nbsp;. For&nbsp; $t > 0$&nbsp; the following applies:
  
 
::<math>x_2(t) = 1\,\text{V} \cdot {\rm e}^{- {t}/(1\,\text{ms})}.</math>
 
::<math>x_2(t) = 1\,\text{V} \cdot {\rm e}^{- {t}/(1\,\text{ms})}.</math>
  
*Entsprechend gilt für das grün dargestellte Signal für alle Zeiten&nbsp; $t$:
+
*Correspondingly, the signal shown in green applies to all times&nbsp; $t$:
  
 
::<math>x_3(t) = 1\,\text{V} \cdot {\rm e}^{- {|\hspace{0.05cm}t\hspace{0.05cm}|}/(1\,\text{ms})}.</math>
 
::<math>x_3(t) = 1\,\text{V} \cdot {\rm e}^{- {|\hspace{0.05cm}t\hspace{0.05cm}|}/(1\,\text{ms})}.</math>
  
Diese drei Signale sollen nun von Ihnen nach den folgenden Kriterien klassifiziert werden:
+
You will now classify these three signals according to the following criteria:
*deterministisch bzw. stochastisch,
+
*deterministic or stochastic,
*kausal bzw. akausal,
+
*causal or acausal,
*energiebegrenzt bzw. leistungsbegrenzt,
+
*energy limited or power limited,
*wertkontinuierlich bzw. wertdiskret,
+
*value-continuous or value-discrete,
*zeitkontinuierlich bzw. zeitdiskret.
+
*time-continuous or time-discrete.
  
  
Line 23: Line 23:
  
  
''Hinweis:''  
+
''Notes:''  
* Die Aufgabe gehört zum Kapitel&nbsp; [[Signal_Representation/Klassifizierung_von_Signalen|Klassifizierung von Signalen]].
+
* This exercise belongs to the chapter &nbsp; [[Signal_Representation/Klassifizierung_von_Signalen|Klassifizierung von Signalen]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ Alle hier betrachteten Signale sind deterministisch.
+
+ All signals considered here are deterministic.
- Alle hier betrachteten Signale sind von stochastischer Natur.
+
- All signals considered here are of stochastic nature.
+ Es handelt sich stets um zeitkontinuierliche Signale.
+
+ The signals are always continuous in time.
- Es handelt sich stets um wertkontinuierliche Signale.
+
- They are always signals of continuous value.
  
{Welche Signale sind gemäß der Definition im Theorieteil kausal?
+
{Which signals are causal according to the definition in the theory part?
 
|type="[]"}
 
|type="[]"}
 
+ <math>x_1(t)</math>,
 
+ <math>x_1(t)</math>,
Line 50: Line 50:
 
<math>P_2 \ = \  </math>{ 0. }  $\ \cdot \text{Vs}$
 
<math>P_2 \ = \  </math>{ 0. }  $\ \cdot \text{Vs}$
  
{Welche der Signale besitzen eine endliche Energie?
+
{Which of the signals have a finite energy?
 
|type="[]"}
 
|type="[]"}
 
- <math>x_1(t)</math>,
 
- <math>x_1(t)</math>,
Line 58: Line 58:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solutions===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Zutreffend sind die <u>Lösungsvorschläge 1 und 3</u>:
+
'''(1)'''&nbsp;  The <u>solutions 1 and 3</u> are applicable:
 
*Alle Signale können in analytischer Form vollständig beschrieben werden; sie sind deshalb auch deterministisch.  
 
*Alle Signale können in analytischer Form vollständig beschrieben werden; sie sind deshalb auch deterministisch.  
 
*Alle Signale sind außerdem für alle Zeiten&nbsp; $t$&nbsp; eindeutig definiert, nicht nur zu gewissen Zeitpunkten. Deshalb handelt es sich stets um zeitkontinuierliche Signale.
 
*Alle Signale sind außerdem für alle Zeiten&nbsp; $t$&nbsp; eindeutig definiert, nicht nur zu gewissen Zeitpunkten. Deshalb handelt es sich stets um zeitkontinuierliche Signale.

Revision as of 21:40, 11 August 2020

predetermined characteristics

Three signal curves are shown on the Right:

  • The blue signal  \(x_1(t)\)  is switched on at time  $t = 0$  and has the value  $t > 0$  den Wert  $1\,\text{V}$.
  • The blue signal  \(x_2(t)\)  is for  $t < 0$  equals zero, jumps at  $t = 0$  to  $1\,\text{V}$  and then falls down with the time constant  $1\,\text{ms}$ . For  $t > 0$  the following applies:
\[x_2(t) = 1\,\text{V} \cdot {\rm e}^{- {t}/(1\,\text{ms})}.\]
  • Correspondingly, the signal shown in green applies to all times  $t$:
\[x_3(t) = 1\,\text{V} \cdot {\rm e}^{- {|\hspace{0.05cm}t\hspace{0.05cm}|}/(1\,\text{ms})}.\]

You will now classify these three signals according to the following criteria:

  • deterministic or stochastic,
  • causal or acausal,
  • energy limited or power limited,
  • value-continuous or value-discrete,
  • time-continuous or time-discrete.



Notes:


Questions

1

Which of the following statements are true?

All signals considered here are deterministic.
All signals considered here are of stochastic nature.
The signals are always continuous in time.
They are always signals of continuous value.

2

Which signals are causal according to the definition in the theory part?

\(x_1(t)\),
\(x_2(t)\),
\(x_3(t)\).

3

Berechnen Sie die auf den Einheitswiderstand  $R = 1\ Ω$  bezogene Energie  \(E_2\)  des Signals  \(x_2(t)\).
Wie groß ist die Leistung  \(P_2\)  dieses Signals?

\(E_2 \ = \ \)

$\ \cdot 10^{-3}\,\text{V}^2\text{s}$
\(P_2 \ = \ \)

$\ \cdot \text{Vs}$

4

Which of the signals have a finite energy?

\(x_1(t)\),
\(x_2(t)\),
\(x_3(t)\).


Solutions

(1)  The solutions 1 and 3 are applicable:

  • Alle Signale können in analytischer Form vollständig beschrieben werden; sie sind deshalb auch deterministisch.
  • Alle Signale sind außerdem für alle Zeiten  $t$  eindeutig definiert, nicht nur zu gewissen Zeitpunkten. Deshalb handelt es sich stets um zeitkontinuierliche Signale.
  • Die Signalamplituden von  \(x_2(t)\)  und  \(x_3(t)\)  können alle beliebigen Werte zwischen  $0$  und  $1\,\text{V}$  annehmen; sie sind deshalb wertkontinuierlich.
  • Dagegen sind beim Signal  \(x_1(t)\)  nur die zwei Signalwerte  $0$  und  $1\,\text{V}$  möglich; es liegt ein wertdiskretes Signal vor.


(2)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Ein Signal bezeichnet man als kausal, wenn es für Zeiten  $t < 0$  nicht existiert bzw. identisch Null ist. Dies gilt für die Signale  \(x_1(t)\)  und  \(x_2(t)\).
  • Dagegen gehört  \(x_3(t)\)  zur Klasse der akausalen Signale.


(3)  Nach der allgemeinen Definition gilt:

\[E_2=\lim_{T_{\rm M}\to\infty}\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x^2_2(t)\,\hspace{0.1cm}{\rm d}t.\]

Im vorliegenden Fall ist die untere Integrationsgrenze Null und die obere Integrationsgrenze  $+\infty$. Man erhält:

\[E_2=\int^\infty_0 (1{\rm V})^2\cdot{\rm e}^{-2t/(1\rm ms)}\,\hspace{0.1cm}{\rm d}t = 5 \cdot 10^{-4}\hspace{0.1cm} \rm V^2s \hspace{0.15cm}\underline{= 0.5 \cdot 10^{-3}\hspace{0.1cm} \rm V^2s}. \]

Bei endlicher Energie ist die zugehörige Leistung stets verschwindend klein. Daraus folgt  $P_2\hspace{0.15cm}\underline{ = 0}$.


(4)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Wie bereits in der letzten Teilaufgabe berechnet wurde, besitzt  \(x_2(t)\)  eine endliche Energie: 
$$E_2= 0.5 \cdot 10^{-3}\hspace{0.1cm} {\rm V^2s}. $$
  • Die Energie des Signals  \(x_3(t)\)  ist doppelt so groß, da nun der Zeitbereich  $t < 0$  den gleichen Beitrag liefert wie der Zeitbereich  $t > 0$. Also ist
$$E_3= 10^{-3}\hspace{0.1cm} {\rm V^2s}.$$
  • Beim Signal  \(x_1(t)\)  divergiert das Energieintegral:  $E_1 \rightarrow \infty$. Dieses Signal weist eine endliche Leistung auf   ⇒   $P_1= 0.5 \hspace{0.1cm} {\rm V}^2$.
  • Das Ergebnis berücksichtigt auch, dass das Signal  \(x_1(t)\)  in der Hälfte der Zeit  $(t < 0)$  identisch Null ist.
  • Das Signal  \(x_1(t)\)  ist dementsprechend  leistungsbegrenzt.