Difference between revisions of "Aufgaben:Exercise 1.2Z: Puls Code Modulation"
From LNTwww
m (Text replacement - "Category:Aufgaben zu Signaldarstellung" to "Category:Exercises for Signal Representation") |
|||
Line 71: | Line 71: | ||
'''(2)''' Correct are the <u>solution suggestions 2 and 3</u>: | '''(2)''' Correct are the <u>solution suggestions 2 and 3</u>: | ||
− | * | + | *The signal $q_{\rm A}(t)$ after sampling is still ''value-continuous'', but now ''time-discrete''. |
− | * | + | *The sampling frequency $f_{\rm A}$ is given by the so-called ''sampling theorem'' . |
− | * | + | *The greater the maximum frequency $f_{\rm N,\,max}$ of the message signal, the greater must $f_{\rm A} ≥ 2 \cdot f_{\rm N,\,max}$ can be selected. |
'''(3)''' Correct are the <u>solution suggestions 1 and 3</u>: | '''(3)''' Correct are the <u>solution suggestions 1 and 3</u>: | ||
− | * | + | *The quantized signal $q_{\rm Q}(t)$ is time and value discrete, where the number of steps are $M = 2^8 = 256$ |
*A binary signal, on the other hand, is a discrete value signal with the number of steps $M = 2$. | *A binary signal, on the other hand, is a discrete value signal with the number of steps $M = 2$. | ||
Line 85: | Line 85: | ||
'''(4)''' Richtig sind hier die <u>Lösungsvorschläge 1, 3 und 5</u>: | '''(4)''' Richtig sind hier die <u>Lösungsvorschläge 1, 3 und 5</u>: | ||
− | * | + | *The coded signal $q_{\rm C}(t)$ is binary $($level number $M = 2)$ with bit duration $T_{\rm B} = T_{\rm A}/8$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category:Exercises for Signal Representation|^1. | + | [[Category:Exercises for Signal Representation|^1. Basic terms of communications engineering^]] |
Revision as of 17:43, 24 August 2020
All modern communication systems are digital. The principle of digital transmission of speech signals goes back to Alec Reeves , who invented the so-called Pulscodemodulation (PCM) already at 1938.
On the right you see the (simplified) block diagram of the PCM transmitter with three functional units:
- The band-limited speech signal ${q(t)}$ is sampled, where the Abtasttheorem is observed, and yields the sampled signal $q_{\rm A}(t)$.
- Each sample $q_{\rm A}(t)$ is mapped to one of $M = 2^N$ and results in the quantized signal $q_{\rm Q}(t)$.
- Each individual quantized value is represented by a code sequence of $N$ binary symbols and results in the coded signal $q_{\rm C}(t)$.
In this task only the different signals of the PCM transmitter are to be classified. Later tasks will deal with other properties of pulse code modulation.
Notes: This task belongs to the chapter Klassifizierung von Signalen.
Questions
Solutions
(1) Correct are the solutions 1, 2 and 4:
- The source signal ${q(t)}$ is analog, i.e. time- and value-continuous.
- Im Allgemeinen macht es keinen Sinn, ein deterministisches Signal zu übertragen.
- Für die mathematische Beschreibung eignet sich ein deterministisches Quellensignal – wie zum Beispiel ein periodisches Signal – besser als ein Zufallssignal.
- Deterministische Signale werden auch für den Testbetrieb herangezogen, um erkannte Fehlfunktionen rekonstruieren zu können.
(2) Correct are the solution suggestions 2 and 3:
- The signal $q_{\rm A}(t)$ after sampling is still value-continuous, but now time-discrete.
- The sampling frequency $f_{\rm A}$ is given by the so-called sampling theorem .
- The greater the maximum frequency $f_{\rm N,\,max}$ of the message signal, the greater must $f_{\rm A} ≥ 2 \cdot f_{\rm N,\,max}$ can be selected.
(3) Correct are the solution suggestions 1 and 3:
- The quantized signal $q_{\rm Q}(t)$ is time and value discrete, where the number of steps are $M = 2^8 = 256$
- A binary signal, on the other hand, is a discrete value signal with the number of steps $M = 2$.
(4) Richtig sind hier die Lösungsvorschläge 1, 3 und 5:
- The coded signal $q_{\rm C}(t)$ is binary $($level number $M = 2)$ with bit duration $T_{\rm B} = T_{\rm A}/8$.