Difference between revisions of "Aufgaben:Exercise 2.5: Half-Wave Rectification"

From LNTwww
m (Text replacement - "Signaldarstellung/Fourierreihe" to "Signal_Representation/Fourier_Series")
Line 104: Line 104:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^2. Periodische Signale^]]
+
[[Category:Exercises for Signal Representation|^2.4 Fourier Series^]]

Revision as of 15:14, 2 November 2020

Gleichgerichtete Cosinusfunktionen

Gesucht sind die Fourierkoeffizienten des unten skizzierten Signals  $x(t)$, das sich durch die Einweggleichrichtung des Sinussignals  $w(t)$  mit der Amplitude  $\pi /2$  ergibt.

Als bekannt vorausgesetzt wird die Fourierreihendarstellung des oben skizzierten Signals  $u(t)$. Diese wurde bereits in der  Aufgabe 2.4  ermittelt. Unter Berücksichtigung der Amplitude  $\pi /2$  gilt hierfür:

$$u(t)=1+\frac{2}{3} \cdot \cos(\omega_1t)-\frac{2}{15}\cdot \cos(2\omega_1t)+\frac{2}{35}\cdot \cos(3\omega_1t)-\dots$$

Anzumerken ist:

  • Die Grundkreisfrequenz ist mit  $\omega_1$  bezeichnet. Da aber die Periodendauer der Signale  $u(t)$  und  $v(t)$  jeweils  $T/2$  beträgt, gilt  $\omega_1 = 2\pi /(T/2) = 4 \pi /T$.
  • Weil in dieser Aufgabe die Signale  $u(t)$,  $w(t)$  und  $x(t)$  zueinander in Bezug gebracht werden sollen, muss auch das Signal  $u(t)$  mit der Periodendauer  $T$  des Signals  $x(t)$  dargestellt werden.
  • Mit  $\omega_0 = 2\pi /T = \omega_1/2$  gilt somit gleichermaßen:
$$u(t)=1+\frac{2}{3} \cdot \cos(2\omega_0t)-\frac{2}{15} \cdot \cos(4\omega_0t)+\frac{2}{35} \cdot \cos(6\omega_0t)-\dots$$

Für die Fourierkoeffizienten bedeutet dies:

  • Der Gleichkoeffizient ergibt sich zu  $A_0 = 1$,
  • Alle Sinuskoeffizienten sind  $B_n = 0$,
  • Die Cosinuskoeffizienten mit ungeradzahligem  $n = 1, \ 3, \ 5, \dots$ sind alle  $0$,
  • Die Cosinuskoeffizienten mit geradzahligem  $n = 2, \ 4, \ 6, \dots$ sind ungleich  $0$ :
$$A_n=(-1)^{\hspace{0.01cm}n/2+1}\frac{2}{n^2-1}.$$

Daraus ergeben sich folgende Zahlenwerte:

$$A_1=A_3=A_5=\dots=0,$$
$$A_2=2/3; \;A_4=-2/15;\;A_6=2/35;\;A_8=-2/63.$$




Hinweise:

  • Die Aufgabe gehört zum Kapitel  Fourierreihe.
  • Eine kompakte Zusammenfassung der Thematik finden Sie in den beiden Lernvideos
Zur Berechnung der Fourierkoeffizienten,
Eigenschaften der Fourierreihendarstellung.


Fragebogen

1

Berechnen Sie die Fourierkoeffizienten des Signals  $v(t)$. Welchen Wert besitzt der Koeffizient  $A_2$?

$v(t)$:   $A_2\ = \ $

2

Berechnen Sie die Fourierkoeffizienten des Signals  $w(t)$. Welchen Wert besitzt der Koeffizient  $B_1$?

$w(t)$:  $B_1\ = \ $

3

Wie kann  $x(t)$  aus  $v(t)$  und  $w(t)$  zusammengesetzt werden? Geben Sie die entsprechenden Fourierkoeffizienten des Signals  $x(t)$  an, insbesondere

$x(t)$:  $A_0\ = \ $

$\hspace{1cm}B_1\ = \ $

$\hspace{1cm}A_2\ = \ $


Musterlösung

(1)  Auch das verschobene Signal  $v(t)$  ist gerade und alle Sinuskoeffizienten sind dementsprechend Null.

  • Am Gleichsignalkoeffizienten ändert sich ebenfalls nichts:  $A_0 = 1$.
  • Aus den Signalverläufen ist zu erkennen, dass  $v(t) = u(t - T/4)$  gilt: 
$$v(t)=1+\frac{2}{3}\cdot \cos(2\omega_0(t-\frac{T}{4}))-\frac{2}{15}\cdot \cos(4\omega_0(t-\frac{T}{4}))+\frac{2}{35}\cdot \cos(6\omega_0(t-\frac{T}{4}))-\dots$$
  • Die Cosinusterme können nun mit  $\omega_0 \cdot T = 2 \pi$  umgeformt werden: 
$$\cos(2\omega_0(t-\frac{T}{4}))=\cos(2\omega_0t-\pi)=-\cos(2\omega_0t),$$
$$\cos(4\omega_0(t-\frac{T}{4}))=\cos(4\omega_0t-2\pi)=\cos(4\omega_0t),$$
$$\cos(6\omega_0(t-\frac{T}{4}))=\cos(6\omega_0t-3\pi)=-\cos(6\omega_0t).$$
  • Damit erhält man für die Fourierreihe:
$$v(t)=1-{2}/{3}\cdot \cos(2\omega_0t)-{2}/{15}\cdot \cos(4\omega_0t)-{2}/{35}\cdot \cos(6\omega_0t)-\dots$$
bzw. für die Cosinuskoeffizienten mit geradzahligem  $n$:
$$A_n=\frac{-2}{n^2-1}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}A_2=-\hspace{-0.05cm}2/3 \hspace{0.1cm}\underline{= -\hspace{-0.05cm}0.667}.$$


(2)  Wegen  $w(t) = \pi /2 \cdot \sin(\omega_0 t)$  sind alle Fourierkoeffizienten außer  $B_1 = \pi /2 \hspace{0.1cm}\underline{=1.571}$  gleich Null.


(3)  Aus der grafischen Darstellung erkennt man den Zusammenhang  $x(t)={1}/{2} \cdot \big [v(t)+w(t) \big].$ Das bedeutet:

$$x(t)=\frac{1}{2}+\frac{\pi}{4}\cdot \sin(\omega_0 t)-\frac{1}{3}\cdot \cos(2\omega_0 t)-\frac{1}{15}\cdot \cos(4\omega_0 t)-\frac{1}{35}\cdot \cos(6\omega_0 t)-\ldots$$
  • Die gesuchten Fourierkoeffizienten sind somit:
$$A_0 \hspace{0.1cm}\underline{=0.5},\hspace{1cm} B_1 = \pi /4 \hspace{0.1cm}\underline{= 0.785},\hspace{1cm} A_2\hspace{0.1cm}\underline{ = -0.333}.$$