Difference between revisions of "Aufgaben:Exercise 4.2Z: Multiplication with a Sine Signal"
m (Text replacement - "Signaldarstellung/Unterschiede und Gemeinsamkeiten von TP- und BP-Signalen" to "Signal Representation/Differences and Similarities of LP and BP Signals") |
|||
Line 129: | Line 129: | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
− | [[Category:Exercises for Signal Representation|^4. | + | [[Category:Exercises for Signal Representation|^4.1 Differences and Similarities of LP and BP Signals^]] |
Revision as of 20:34, 24 November 2020
Betrachtet wird ein periodisches Nachrichtensignal $q(t)$, dessen Spektralfunktion $Q(f)$ in der oberen Grafik zu sehen ist.
Eine Multiplikation mit dem dimensionslosen Träger $z(t)$, dessen Spektrum $Z(f)$ ebenfalls dargestellt ist, führt zum Signal $s(t) = q(t) \cdot z(t).$
In dieser Aufgabe soll die Spektralfunktion $S(f)$ dieses Signals ermittelt werden, wobei die Lösung entweder im Zeit– oder im Frequenzbereich erfolgen kann.
Hinweis:
- Die Aufgabe gehört zum Kapitel Unterschiede und Gemeinsamkeiten von Tiefpass– und Bandpass–Signalen.
Fragebogen
Musterlösung
- $$q(t ) = 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi f_1 t) - 2\hspace{0.05cm}{\rm V} \cdot {\sin} ( 4 \pi f_1 t)= 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi {t}/{T_1}) - 2\hspace{0.05cm}{\rm V} \cdot {\sin} ( 4 \pi {t}/{T_1}) .$$
- Zum Zeitpunkt $t = 0$ verschwindet der zweite Anteil und es ergibt sich $q(t = 0)\; \underline{= 4 \ \text{V}}$.
- Dagegen erhält man für $t = 0.125 \ \text{ms} = T_1/8$:
- $$q(t = 0.125{\rm ms}) = 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( {\pi}/{4}) - 2\hspace{0.05cm}{\rm V} \cdot {\sin} ( {\pi}/{2}) = \frac {4\hspace{0.05cm}{\rm V}}{\sqrt{2}} - 2\hspace{0.05cm}{\rm V} \hspace{0.15 cm}\underline{= 0.828 \hspace{0.05cm}{\rm V}}.$$
(2) Entsprechend dem rein imaginären Spektrum $Z(f)$ und den Impulsgewichten $\pm 3$ muss gelten:
- $$z(t ) = 6 \cdot {\sin} ( 2 \pi \cdot 5\hspace{0.05cm}{\rm kHz})\hspace{0.5cm}\Rightarrow \hspace{0.5cm} z_{\rm max}\hspace{0.15 cm}\underline{ = 6} .$$
(3) Die Spektralfunktion $S(f)$ ergibt sich aus der Faltung zwischen $Q(f)$ und $Z(f)$. Man erhält:
- $$S(f) = - 3{\rm j} \cdot Q(f- f_{\rm T}) + 3{\rm j} \cdot Q(f+ f_{\rm T}).$$
Es ergeben sich Spektrallinien bei
- $3\ \text{kHz}\ (–3\ {\rm V})$,
- $4\ \text{kHz} (–{\rm j} \cdot 6\ {\rm V})$,
- $6\ \text{kHz} (–{\rm j} \cdot 6\ {\rm V})$,
- $7\ \text{kHz}\ (–3\ {\rm V})$.
Dazu noch die konjugiert–komplexen Anteile bei negativen Frequenzen.
Linien mit reellen Gewichten bei $\underline{\pm 3 \ \text{kHz}}$ und $\underline{\pm 7 \ \text{kHz}}$.
(4) Imaginäre Linien treten bei $\underline{\pm 4 \ \text{kHz}}$ und $\underline{\pm 6 \ \text{kHz}}$ auf.
Eine alternative Möglichkeit zur Lösung dieser Aufgabe ist die Anwendung trigonometrischer Gleichungen.
Im Folgenden bezeichnet zum Beispiel $f_5 = 5 \text{ kHz}$. Dann gilt:
- $$4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi f_1 \hspace{0.03cm}t) \cdot 3 \cdot {\sin} ( 2 \pi f_5 \hspace{0.03cm} t)= \frac{12\hspace{0.05cm}{\rm V}}{2}\cdot \big[{\sin} ( 2 \pi f_4 \hspace{0.03cm} t)+ {\sin} ( 2 \pi f_6 \hspace{0.03cm} t)\big],$$
- $$-2\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi f_2 \hspace{0.03cm}t) \cdot 3 \cdot {\sin} ( 2 \pi f_5 \hspace{0.03cm} t)= \frac{-6\hspace{0.05cm}{\rm V}}{2}\cdot \big[{\cos} ( 2 \pi f_3 \hspace{0.03cm} t)+ {\cos} ( 2 \pi f_7 \hspace{0.03cm} t)\big].$$
- Aus der ersten Gleichung ergeben sich folgende Spektrallinien:
- bei $+f_4$ bzw. $-f_4$ mit den Gewichten $–{\rm j} \cdot 3\ {\rm V}$ bzw. $+{\rm j}\cdot 3 \ {\rm V}$,
- bei $+f_6$ bzw. $-f_6$ mit den Gewichten $–{\rm j} \cdot 3 \ {\rm V}$ bzw. $+{\rm j} \cdot 3 \ {\rm V}$.
- Die zweite Gleichung liefert insgesamt vier Diraclinien (alle $6 \ {\rm V}$, reell und negativ) bei $\pm f_3$ und $\pm f_7$.
Ein Vergleich mit obiger Skizze zeigt, dass beide Lösungswege zum gleichen Ergebnis führen.