Difference between revisions of "Aufgaben:Exercise 1.4Z: On the Doppler Effect"
Line 13: | Line 13: | ||
− | The equations given in the | + | The equations given in the theoretical section for the reception frequency are |
* taking into account the theory of relativity (briefly referred to as „relativistic”): | * taking into account the theory of relativity (briefly referred to as „relativistic”): | ||
− | $${\rm equation \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)} \hspace{0.05cm},$$ | + | :$${\rm equation \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)} \hspace{0.05cm},$$ |
* without consideration of relativistic properties (referred to as „conventional”): | * without consideration of relativistic properties (referred to as „conventional”): | ||
− | $${\rm equation \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.$$ | + | :$${\rm equation \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.$$ |
Line 34: | Line 34: | ||
===Questions=== | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Which Doppler frequencies result for the speeds $v_1$ and $v_2$ in direction | + | {Which Doppler frequencies result for the speeds $v_1$ and $v_2$ in driving direction $\rm (A)$ with <b> equation (1)</b>? |
|type="{}"} | |type="{}"} | ||
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% } | $v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% } | ||
$v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% } $\cdot \ 10^{-5}$ | $v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% } $\cdot \ 10^{-5}$ | ||
− | {Which Doppler frequencies are obtained for the opposite direction | + | {Which Doppler frequencies are obtained for the opposite driving direction $\rm (B)$ with <b>equation (1)</b>. |
|type="{}"} | |type="{}"} | ||
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { -0.515--0.485 } | $v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { -0.515--0.485 } | ||
Line 51: | Line 51: | ||
$\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { -1.03--0.97 } $\cdot \ 10^{\rm –5}$ | $\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { -1.03--0.97 } $\cdot \ 10^{\rm –5}$ | ||
− | {Let $f_{\rm S} = 2 \rm GHz$. Which Doppler frequencies result for the direction | + | {Let $f_{\rm S} = 2 \ \rm GHz$. Which Doppler frequencies result for the driving direction $\rm (C)$ and $\rm (D)$ with <b> equation (2)</b>? |
|type="{}"} | |type="{}"} | ||
${\rm direction \ (C)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $ { 0. } $\ \ \rm Hz$ | ${\rm direction \ (C)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $ { 0. } $\ \ \rm Hz$ | ||
Line 59: | Line 59: | ||
===Solutions=== | ===Solutions=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' With the direction of travel (A), the receiver approaches the transmitter at an angle $\alpha = 0$. This gives (1) according to the relativistic equation: | + | '''(1)''' With the direction of travel (A), the receiver approaches the transmitter at an angle $\alpha = 0$. This gives (1) according to the relativistic equation: |
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } | :$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm} |
Revision as of 14:59, 7 December 2020
The Doppler effect is the change in the perceived frequency of waves of any kind as the source (transmitter) and observer (receiver) move relative to each other.
Here we always assume a static transmitter, while the receiver can move in four different directions $\rm (A)$, $\rm (B)$, $\rm (C)$ and $\rm (D)$ (see diagram).
Different speeds are to be investigated:
- an unrealistically high speed $v_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s}$,
- the maximum speed $v_2 = 3 \ {\rm km/s} \ (10800 \ {\rm km/h})$ during unmanned test flight,
- approximately the maximum speed $v_3 = 30 \ {\rm m/s} = 108 \ \ \rm km/h$ on federal roads.
The equations given in the theoretical section for the reception frequency are
- taking into account the theory of relativity (briefly referred to as „relativistic”):
- $${\rm equation \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)} \hspace{0.05cm},$$
- without consideration of relativistic properties (referred to as „conventional”):
- $${\rm equation \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.$$
Notes:
- This task belongs to the topic of Statistical bindings within the Rayleigh process.
- $c = 3 \cdot 10^8 \ \ \rm m/s$ is the speed of light.
- To check your results you can use the applet The Doppler Effect.
Questions
Solutions
- $$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.$$
- With $\upsilon_1/c = 0.6$ you get
- $${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2 \hspace{0.05cm}.$$
- Correspondingly with $\upsilon_2/c = 10^{\rm –5}$:
- $${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1 \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001 \hspace{0.05cm}.$$
(2) Now the receiver moves away from the transmitter ($\alpha = 180^°$).
- The receive frequency $f_{\rm E}$ is lower than the transmit frequency $f_{\rm S}$ and the Doppler frequency $f_{\rm D}$ is negative. With ${\rm cos}(\alpha) = \ –1$ you now get
- $${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 = \left\{ \begin{array}{c} \hspace{0.15cm} \underline{ -0.5} \\ \\ \hspace{0.15cm} \underline{ -10^{-5}} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.$$
- Converting to $f_{\rm E}/f_{\rm S}$ results in:
- $${f_{\rm E}}/{f_{\rm S}} = \left\{ \begin{array}{c} \hspace{0.15cm} { 0.5} \\ \\ \hspace{0.15cm} { 0.99999} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.$$
(3) The following equations apply here:
- $$f_{\rm E} = f_{\rm S} \cdot \left [ 1 + {v}/{c} \cdot \cos(\alpha) \right ] \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = {v}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.$$
This results in the following numerical values:
- Direction (A), $v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,$
- Direction (A), $v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,$
- Direction (B), $v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,$
- Direction (B), $v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.$
You can tell:
- For realistic speeds – including $v \ \approx \ 10000 \ {\rm km/h}$ – the conventional equation (2) gives the same result as the relativistic equation (1) up to the accuracy of a pocket calculator.
- With the approximation, the angles $\alpha = 0^°$ and $\alpha = 180^\circ$ result in the same absolute value for the Doppler frequency.
- The approximations differ only in the sign.
- In the relativistic equation this symmetry is no longer present. See subtasks (1) and (2).
(4) Equation (2) leads here to the result: $$f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.$$
- The direction of travel (C) is perpendicular ($\alpha = 90^\circ$) to the connection line transmitter–receiver. In this case, no Doppler shift occurs:
- $$f_{\rm D} \ \ \underline {= \ 0}.$$
- The direction of movement (D) is characterized by $\alpha = \ –135^\circ$. As a result:
- $$f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}} \hspace{0.05cm}.$$