Difference between revisions of "Aufgaben:Exercise 3.2: From the Spectrum to the Signal"

From LNTwww
Line 5: Line 5:
 
[[File:P_ID495__Sig_A_3_2.png|right|frame|Spektraldarstellung der Sprungfunktion]]
 
[[File:P_ID495__Sig_A_3_2.png|right|frame|Spektraldarstellung der Sprungfunktion]]
  
Gegeben sei die Spektralfunktion
+
Given the spectral function
 
   
 
   
 
:$$X(f) = \frac{{2\,{\rm V}}}{ { {\rm j}\pi f}}.$$
 
:$$X(f) = \frac{{2\,{\rm V}}}{ { {\rm j}\pi f}}.$$
  
Die zugehörige Zeitfunktion  $x(t)$  kann mit Hilfe des  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_zweite_Fourierintegral|zweiten Fourierintegrals]]  ermittelt werden:
+
The associated time function  $x(t)$  can be determined with the help of  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_Second_Fourier_Integral|The Second Fourier Integral]] :
 
   
 
   
 
:$$x(t)  = \int_{ - \infty }^{ + \infty } {X(f)}  \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d} f =  x_{\rm R} (t) + {\rm j} \cdot x_{\rm I} (t),$$
 
:$$x(t)  = \int_{ - \infty }^{ + \infty } {X(f)}  \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d} f =  x_{\rm R} (t) + {\rm j} \cdot x_{\rm I} (t),$$
  
wobei für den Realteil bzw. den Imaginärteil gilt:
+
where holds for the real part and the imaginary part, respectively:
 
   
 
   
 
:$$x_{\rm R} (t) = 2\,{\rm V} \cdot \int_{ - \infty }^{ + \infty } {\frac{{\sin ( {2\pi ft} )}}{ {\pi f}}}\hspace{0.1cm} {\rm d}f, $$
 
:$$x_{\rm R} (t) = 2\,{\rm V} \cdot \int_{ - \infty }^{ + \infty } {\frac{{\sin ( {2\pi ft} )}}{ {\pi f}}}\hspace{0.1cm} {\rm d}f, $$
Line 25: Line 25:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum Kapitel  [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fouriertransformation und –rücktransformation]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier Transform and Its Inverse]].
 
   
 
   
*Benutzen Sie zur Lösung eventuell die nachfolgenden Angaben:
+
*If necessary, use the following information for the solution:
  
 
:$$x( {t = 0}) = \int_{ - \infty }^{ + \infty } {X( f )}\hspace{0.1cm} {\rm d}f,\hspace{0.5cm} X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.1cm} {\rm d}t ,\hspace{0.5cm}\int_0^\infty  {\frac{{\sin ( {ax} )}}{x}}\hspace{0.1cm} {\rm d}x = {\rm sign} ( a ) \cdot{\pi }/{2}. $$  
 
:$$x( {t = 0}) = \int_{ - \infty }^{ + \infty } {X( f )}\hspace{0.1cm} {\rm d}f,\hspace{0.5cm} X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.1cm} {\rm d}t ,\hspace{0.5cm}\int_0^\infty  {\frac{{\sin ( {ax} )}}{x}}\hspace{0.1cm} {\rm d}x = {\rm sign} ( a ) \cdot{\pi }/{2}. $$  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen treffen für das Zeitsignal&nbsp; $x(t)$&nbsp; zu?
+
{Which of the following statements are true for the time signa&nbsp; $x(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- $x(t)$&nbsp; ist eine komplexe Funktion.
+
- $x(t)$&nbsp; is a complex function.
+ $x(t)$&nbsp; ist rein reell.
+
+ $x(t)$&nbsp; is purely real.
- $x(t)$&nbsp; ist rein imaginär.
+
- $x(t)$&nbsp; is purely imaginary.
  
{Berechnen Sie den Signalverlauf&nbsp; $x(t)$&nbsp; im gesamten Definitionsgebiet. Welche Werte treten zu den Zeiten&nbsp; $t = 1\, \text{ms}$&nbsp; und&nbsp; $t = -\hspace{-0.05cm}1\, \text{ ms}$&nbsp; auf?
+
{Calculate the signal curve&nbsp; $x(t)$&nbsp; in the entire definition area. Which values occur at the times&nbsp; $t = 1\, \text{ms}$&nbsp; and&nbsp; $t = -\hspace{-0.05cm}1\, \text{ ms}$&nbsp; auf?
 
|type="{}"}
 
|type="{}"}
 
$x(t=+1\, \text{ms}) \ = \ $ { 2 3% } $\ \text{V}$
 
$x(t=+1\, \text{ms}) \ = \ $ { 2 3% } $\ \text{V}$
 
$x(t=-1 \text{ms})\hspace{0.2cm} = \ $  { -2.1--1.9 } $\ \text{V}$
 
$x(t=-1 \text{ms})\hspace{0.2cm} = \ $  { -2.1--1.9 } $\ \text{V}$
  
{Wie lautet der Signalwert zum Zeitpunkt&nbsp; $t = 0$?
+
{What is the signal value at time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$x(t=0) \ = \ $ { 0. } $\ \text{V}$
 
$x(t=0) \ = \ $ { 0. } $\ \text{V}$
  
{Wie groß ist der Spektralwert bei der Frequenz&nbsp; $f = 0$?
+
{What is the spectral value at the frequency&nbsp; $f = 0$?
 
|type="{}"}
 
|type="{}"}
 
$X(f=0) \ = \ ${ 0. } $\ \text{V/Hz}$
 
$X(f=0) \ = \ ${ 0. } $\ \text{V/Hz}$
Line 57: Line 57:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u> &nbsp; &rArr; &nbsp;$x(t)$&nbsp; ist <u>rein reell</u>:
+
'''(1)'''&nbsp; Correct is the <u>proposed solution 2</u> &nbsp; &rArr; &nbsp;$x(t)$&nbsp; is <u>purely real:</u>:
*Beim imaginären Signalanteil &nbsp; &rArr; &nbsp;  $x_{\rm I}(t)$&nbsp; ist der Integrand eine ungerade Funktion (gerader Zähler, ungerader Nenner).  
+
*For the imaginary signal component&nbsp; &rArr; &nbsp;  $x_{\rm I}(t)$&nbsp; the integrand is an odd function (gerader Zähler, ungerader Nenner).  
*Somit ist das Integral von&nbsp; $-\infty$&nbsp; bis&nbsp; $+\infty$&nbsp; gleich Null.
+
*Thus the integral from&nbsp; $-\infty$&nbsp; bis&nbsp; $+\infty$&nbsp; is zero.
*Demgegenüber liefert beim reellen Anteil&nbsp; $x_{\rm R}(t)$ &nbsp; &rArr; &nbsp; gerader Integrand (ungerader Zähler, ungerader Nenner) einen von Null verschiedenen Wert.
+
*In contrast, for the real component&nbsp; $x_{\rm R}(t)$ &nbsp; &rArr; &nbsp; even integrand (odd numerator, odd denominator) yields a non-zero value.
  
  
  
'''(2)'''&nbsp; Mit der Abkürzung&nbsp; $a = 2\pi t$&nbsp; kann für das Zeitsignal geschrieben werden:
+
'''(2)'''&nbsp; With the abbreviation&nbsp; $a = 2\pi t$&nbsp; can be written for the time signal:
 +
 
 
   
 
   
 
:$$x(t) = x_{\rm R} \left( t \right) = \frac{{4\,{\rm V}}}{\pi }\int_0^\infty  {\frac{{\sin( {af} )}}{f}}\hspace{0.1cm} {\rm d}f.$$
 
:$$x(t) = x_{\rm R} \left( t \right) = \frac{{4\,{\rm V}}}{\pi }\int_0^\infty  {\frac{{\sin( {af} )}}{f}}\hspace{0.1cm} {\rm d}f.$$
  
Dies führt unter Verwendung des angegebenen bestimmten Integrals zum Ergebnis:
+
This leads to the result using the given definite integral:
 
   
 
   
 
:$$x(t) = \frac{{4\,{\rm V}}}{\pi } \cdot \frac{\pi }{2} \cdot {\mathop{\rm sign}\nolimits} ( t ) = 2\;{\rm V} \cdot {\mathop{\rm sign}\nolimits} ( t ).$$
 
:$$x(t) = \frac{{4\,{\rm V}}}{\pi } \cdot \frac{\pi }{2} \cdot {\mathop{\rm sign}\nolimits} ( t ) = 2\;{\rm V} \cdot {\mathop{\rm sign}\nolimits} ( t ).$$
  
*Für&nbsp; $t > 0$&nbsp; ist&nbsp; $x(t) = +2\,\text{V}$ .  
+
*For&nbsp; $t > 0$&nbsp; &nbsp; $x(t) = +2\,\text{V}$ .  
*Entsprechend gilt&nbsp; $x(t) = -\hspace{-0.1cm}2\,\text{V}$&nbsp; für&nbsp; $t < 0$.  
+
*Correspondingly,&nbsp; $x(t) = -\hspace{-0.1cm}2\,\text{V}$&nbsp; applies for&nbsp; $t < 0$.  
*Das Signal&nbsp; $x(t)$&nbsp; beschreibt also eine Sprungfunktion von&nbsp; $-\hspace{-0.05cm}2\,\text{V}$ auf $+2\,\text{V}$.
+
*The signal&nbsp; $x(t)$&nbsp; thus describes a step function from&nbsp; $-\hspace{-0.05cm}2\,\text{V}$ auf $+2\,\text{V}$.
  
  
  
'''(3)'''&nbsp; Bei&nbsp; $t = 0$&nbsp; besitzt&nbsp; $x(t)$&nbsp; eine Sprungstelle. Der rechtsseitige Grenzwert für&nbsp; $t \rightarrow 0$&nbsp; lautet&nbsp; $x_+ = +2\,\text{V}$.  
+
'''(3)'''&nbsp; At&nbsp; $t = 0$&nbsp; &nbsp; $x(t)$&nbsp; has a jump point. The right-hand limit value for&nbsp; $t \rightarrow 0$&nbsp; lautet&nbsp; $x_+ = +2\,\text{V}$.  
*Nähert man sich der Sprungstelle von negativen Zeiten beliebig nahe, so erhält man&nbsp; $x_– = -\hspace{-0.05cm}2\,\text{V}$. Für den tatsächlichen Signalwert bei&nbsp; $t = 0$&nbsp; gilt dann:
+
*If one approaches the jump point of negative times as close as desired, one obtains&nbsp; $x_– = -\hspace{-0.05cm}2\,\text{V}$. The following then applies to the actual signal value at&nbsp; $t = 0$&nbsp;:
 
   
 
   
 
:$$x( {t = 0} ) = {1}/{2}\cdot ( x_{+} +    x_{-} ) \hspace{0.15 cm}\underline{= 0}.$$
 
:$$x( {t = 0} ) = {1}/{2}\cdot ( x_{+} +    x_{-} ) \hspace{0.15 cm}\underline{= 0}.$$
  
*Zum gleichen Ergebnis kommt man bei Berücksichtigung der Beziehung
+
*The same result is obtained by considering the relation
  
 
:$$x( t = 0) = \int_{ - \infty }^{ + \infty } {X( f)}\hspace{0.1cm} {\rm d}f = 0.$$
 
:$$x( t = 0) = \int_{ - \infty }^{ + \infty } {X( f)}\hspace{0.1cm} {\rm d}f = 0.$$
  
  
'''(4)'''&nbsp; Der Spektralwert bei&nbsp; $f = 0$&nbsp; ist gleich dem Integral von&nbsp; $-\infty$&nbsp; bis&nbsp; $+\infty$&nbsp; über die Zeitfunktion&nbsp; $x(t)$:
+
'''(4)'''&nbsp; The spectral value at&nbsp; $f = 0$&nbsp; is equal to the integral from&nbsp; $-\infty$&nbsp; to&nbsp; $+\infty$&nbsp; over the time function&nbsp; $x(t)$:
 
   
 
   
 
:$$X( f = 0) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.1cm} {\rm d}t \hspace{0.15 cm}\underline{= 0}.$$
 
:$$X( f = 0) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.1cm} {\rm d}t \hspace{0.15 cm}\underline{= 0}.$$
  
Hier noch ein zweiter Lösungsweg:  
+
Here is a second solution:
*Der rechtsseitige Grenzwert für&nbsp; $f → 0$&nbsp; ist&nbsp; $X_+ = -\text{j} \cdot \infty$, der linksseitige Grenzwert&nbsp; $X_- = \text{j} \cdot \infty$.  
+
*The right-hand limit for&nbsp; $f → 0$&nbsp; is&nbsp; $X_+ = -\text{j} \cdot \infty$, the left-hand limit&nbsp; $X_- = \text{j} \cdot \infty$.  
*Auch bezüglich des Spektralwertes bei&nbsp; $f = 0$&nbsp; gilt also der Zusammenhang:
+
*So the relationship also applies with regard to the spectral value at &nbsp; $f = 0$&nbsp;:
 
 
 
:$$X( {f = 0}) = {1}/{2}\cdot \left( {X_{ +}  + X_{-}  } \right) = 0.$$
 
:$$X( {f = 0}) = {1}/{2}\cdot \left( {X_{ +}  + X_{-}  } \right) = 0.$$
 
   
 
   

Revision as of 22:47, 17 January 2021

Spektraldarstellung der Sprungfunktion

Given the spectral function

$$X(f) = \frac{{2\,{\rm V}}}{ { {\rm j}\pi f}}.$$

The associated time function  $x(t)$  can be determined with the help of  The Second Fourier Integral :

$$x(t) = \int_{ - \infty }^{ + \infty } {X(f)} \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d} f = x_{\rm R} (t) + {\rm j} \cdot x_{\rm I} (t),$$

where holds for the real part and the imaginary part, respectively:

$$x_{\rm R} (t) = 2\,{\rm V} \cdot \int_{ - \infty }^{ + \infty } {\frac{{\sin ( {2\pi ft} )}}{ {\pi f}}}\hspace{0.1cm} {\rm d}f, $$
$$x_{\rm I} (t) = -2\, {\rm V} \cdot \int_{ - \infty }^{ + \infty } {\frac{ {\cos ( {2\pi ft} )}}{ {\pi f}}} \hspace{0.1cm}{\rm d}f.$$





Hints:

  • If necessary, use the following information for the solution:
$$x( {t = 0}) = \int_{ - \infty }^{ + \infty } {X( f )}\hspace{0.1cm} {\rm d}f,\hspace{0.5cm} X( {f = 0} ) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.1cm} {\rm d}t ,\hspace{0.5cm}\int_0^\infty {\frac{{\sin ( {ax} )}}{x}}\hspace{0.1cm} {\rm d}x = {\rm sign} ( a ) \cdot{\pi }/{2}. $$


Questions

1

Which of the following statements are true for the time signa  $x(t)$ ?

$x(t)$  is a complex function.
$x(t)$  is purely real.
$x(t)$  is purely imaginary.

2

Calculate the signal curve  $x(t)$  in the entire definition area. Which values occur at the times  $t = 1\, \text{ms}$  and  $t = -\hspace{-0.05cm}1\, \text{ ms}$  auf?

$x(t=+1\, \text{ms}) \ = \ $

$\ \text{V}$
$x(t=-1 \text{ms})\hspace{0.2cm} = \ $

$\ \text{V}$

3

What is the signal value at time  $t = 0$?

$x(t=0) \ = \ $

$\ \text{V}$

4

What is the spectral value at the frequency  $f = 0$?

$X(f=0) \ = \ $

$\ \text{V/Hz}$


Solution

(1)  Correct is the proposed solution 2   ⇒  $x(t)$  is purely real::

  • For the imaginary signal component  ⇒   $x_{\rm I}(t)$  the integrand is an odd function (gerader Zähler, ungerader Nenner).
  • Thus the integral from  $-\infty$  bis  $+\infty$  is zero.
  • In contrast, for the real component  $x_{\rm R}(t)$   ⇒   even integrand (odd numerator, odd denominator) yields a non-zero value.


(2)  With the abbreviation  $a = 2\pi t$  can be written for the time signal:


$$x(t) = x_{\rm R} \left( t \right) = \frac{{4\,{\rm V}}}{\pi }\int_0^\infty {\frac{{\sin( {af} )}}{f}}\hspace{0.1cm} {\rm d}f.$$

This leads to the result using the given definite integral:

$$x(t) = \frac{{4\,{\rm V}}}{\pi } \cdot \frac{\pi }{2} \cdot {\mathop{\rm sign}\nolimits} ( t ) = 2\;{\rm V} \cdot {\mathop{\rm sign}\nolimits} ( t ).$$
  • For  $t > 0$    $x(t) = +2\,\text{V}$ .
  • Correspondingly,  $x(t) = -\hspace{-0.1cm}2\,\text{V}$  applies for  $t < 0$.
  • The signal  $x(t)$  thus describes a step function from  $-\hspace{-0.05cm}2\,\text{V}$ auf $+2\,\text{V}$.


(3)  At  $t = 0$    $x(t)$  has a jump point. The right-hand limit value for  $t \rightarrow 0$  lautet  $x_+ = +2\,\text{V}$.

  • If one approaches the jump point of negative times as close as desired, one obtains  $x_– = -\hspace{-0.05cm}2\,\text{V}$. The following then applies to the actual signal value at  $t = 0$ :
$$x( {t = 0} ) = {1}/{2}\cdot ( x_{+} + x_{-} ) \hspace{0.15 cm}\underline{= 0}.$$
  • The same result is obtained by considering the relation
$$x( t = 0) = \int_{ - \infty }^{ + \infty } {X( f)}\hspace{0.1cm} {\rm d}f = 0.$$


(4)  The spectral value at  $f = 0$  is equal to the integral from  $-\infty$  to  $+\infty$  over the time function  $x(t)$:

$$X( f = 0) = \int_{ - \infty }^{ + \infty } {x( t)}\hspace{0.1cm} {\rm d}t \hspace{0.15 cm}\underline{= 0}.$$

Here is a second solution:

  • The right-hand limit for  $f → 0$  is  $X_+ = -\text{j} \cdot \infty$, the left-hand limit  $X_- = \text{j} \cdot \infty$.
  • So the relationship also applies with regard to the spectral value at   $f = 0$ :
$$X( {f = 0}) = {1}/{2}\cdot \left( {X_{ +} + X_{-} } \right) = 0.$$