Difference between revisions of "Aufgaben:Exercise 3.6: Even and Odd Time Signals"
m (Oezdemir moved page Aufgabe 3.6: Gerades/ungerades Zeitsignal to Exercise 3.6: Even/Odd Time Signal) |
|||
Line 5: | Line 5: | ||
[[File:P_ID516__Sig_A_3_6_neu.png|250px|right|frame|„Keilfunktion” sowie ein gerades und ein ungerades Zeitsignal]] | [[File:P_ID516__Sig_A_3_6_neu.png|250px|right|frame|„Keilfunktion” sowie ein gerades und ein ungerades Zeitsignal]] | ||
− | + | We are looking for the spectrum X(f) of the pulse-shaped signal x(t) sketched opposite, which rises linearly from $2\,\text{ V}$ to $4\,\text{ V}$ in the range from $–T/2$ to $+T/2$ and is zero outside. | |
− | + | The spectral functions of the signals g(t) and u(t) shown below are assumed to be known: | |
− | * | + | *The even, rectangular time function g(t) has the spectrum |
:G(f)=Ag⋅T⋅si(πfT)mitsi(x)=sin(x)/x. | :G(f)=Ag⋅T⋅si(πfT)mitsi(x)=sin(x)/x. | ||
− | * | + | *The spectrum of the asymmetric function u(t) is: |
:U(f)=−j⋅Au⋅T2πfT[si(πfT)−cos(πfT)]. | :U(f)=−j⋅Au⋅T2πfT[si(πfT)−cos(πfT)]. | ||
Line 23: | Line 23: | ||
− | '' | + | ''Hints:'' |
− | * | + | *This exercise belongs to the chapter [[Signal_Representation/Fourier_Transform_Laws|Fourier Transform Laws]]. |
− | * | + | *All of these laws are illustrated with examples in the learning video [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] . |
− | * | + | *Solve this task with the help of the [[Signal_Representation/Fourier_Transform_Laws#Mapping_theorem|mapping theorem]]. |
− | * | + | *Use the signal parameters Au=1 V and T=1 ms for the first two subtasks. |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Calculate the (purely imaginary) spectral values of the unbalanced signal u(t) at the frequencies f=0.5kHz and f=1kHz. |
|type="{}"} | |type="{}"} | ||
Im[U(f=0.5kHz)] = { -0.205--0.195 } mV/Hz | Im[U(f=0.5kHz)] = { -0.205--0.195 } mV/Hz | ||
Im[U(f=1.0kHz)] = { 0.159 3% } mV/Hz | Im[U(f=1.0kHz)] = { 0.159 3% } mV/Hz | ||
− | { | + | {What is the spectral value of u(t) at the frequency f=0? |
− | '' | + | ''Hint'': Think before you calculate. |
|type="{}"} | |type="{}"} | ||
Im[U(f=0)] = { 0. } mV/Hz | Im[U(f=0)] = { 0. } mV/Hz | ||
− | { | + | {Using the result from '''(1)''' calculate the spectral value of the signal x(t) at the frequency f=0.5kHz. |
|type="{}"} | |type="{}"} | ||
Re[X(f=0.5kHz)] = { 1.91 3% } mV/Hz | Re[X(f=0.5kHz)] = { 1.91 3% } mV/Hz | ||
Line 53: | Line 53: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' For f⋅T=0.5 one obtains from the given equation: |
:U(f=0.5kHz)=−j⋅Au⋅Tπ⋅si(π/2)=−j⋅2π2⋅Au⋅T. | :U(f=0.5kHz)=−j⋅Au⋅Tπ⋅si(π/2)=−j⋅2π2⋅Au⋅T. | ||
− | * | + | *The imaginary part is numerically Im[U(f=0.5kHz)]≈0.2mV/Hz_. |
− | * | + | *In contrast, the si function at f⋅T=1 yields the value zero, while the cosine is equal to −1 . Thus, with Au=1V and T=1ms one obtains: |
:U(f=1kHz)=j⋅Au⋅T2π⇒Re[...]=0_,Im[...]≈0.159mV/Hz_. | :U(f=1kHz)=j⋅Au⋅T2π⇒Re[...]=0_,Im[...]≈0.159mV/Hz_. | ||
Line 67: | Line 67: | ||
− | '''(2)''' | + | '''(2)''' According to the mapping theorem, an odd time function u(t) always has an imaginary and at the same time odd spectrum |
− | U(−f)=−U(f). | + | U(−f)=−U(f). With the boundary transition f→∞ follows from the given equation |
:U(f)=−j⋅Au⋅T2πfT[si(πfT)−cos(πfT)] | :U(f)=−j⋅Au⋅T2πfT[si(πfT)−cos(πfT)] | ||
− | + | the result U(f=0)=0. Formally, one could confirm this result by applying l'Hospital's rule. | |
− | + | We proceed a little more pragmatically. | |
− | * | + | *For example, if we set f⋅T=0.01, we obtain: |
− | + | U(f⋅T=0.01)=−j⋅Au⋅T0.02π[si(0.01π)−cos(0.01π)]=−j⋅Au⋅T0.02π(0.999836−0.999507)≈−j⋅5⋅10−6V/Hz. | |
− | * | + | *For even smaller frequency values, the result also becomes smaller and smaller. |
− | * | + | *You get to the result U(f=0)=0_, more quickly if you take into account that the integral over u(t) disappears. |
− | * | + | *So you don't have to calculate at all. |
− | '''(3)''' | + | '''(3)''' The signal x(t) can be divided into the even and the odd part, which lead to the even real part and the odd imaginary part of X(f) : |
− | * | + | *The even part is equal to the function g(t) with Ag=3V. From this follows for the real part of the spectral value at f⋅T=0.5: |
:Re[X(f⋅T=0.5)]=Ag⋅T⋅si(π/2)=1.91mV/Hz_. | :Re[X(f⋅T=0.5)]=Ag⋅T⋅si(π/2)=1.91mV/Hz_. | ||
− | * | + | *The imaginary part results from the spectral function U(f) with Au=1V. This was already calculated in subtask '''(1)''' : |
:Im[X(f⋅T=0.5)]≈−0.2mV/Hz_. | :Im[X(f⋅T=0.5)]≈−0.2mV/Hz_. |
Revision as of 19:36, 27 January 2021
We are looking for the spectrum X(f) of the pulse-shaped signal x(t) sketched opposite, which rises linearly from 2 V to 4 V in the range from –T/2 to +T/2 and is zero outside.
The spectral functions of the signals g(t) and u(t) shown below are assumed to be known:
- The even, rectangular time function g(t) has the spectrum
- G( f ) = A_g \cdot T \cdot {\mathop{\rm si}\nolimits}( { {\rm{\pi }}fT} ) \hspace{0.3cm} {\rm{mit}}\hspace{0.3cm} {\mathop{\rm si}\nolimits}( x ) = {\sin ( x )}/{x}.
- The spectrum of the asymmetric function u(t) is:
- U( f ) = - {\rm{j}} \cdot \frac{ {A_u \cdot T}}{ {2{\rm{\pi }}fT}}\big[ {{\mathop{\rm si}\nolimits} ( { {\rm{\pi }}fT} ) - \cos ( { {\rm{\pi }}fT} )} \big].
Hints:
- This exercise belongs to the chapter Fourier Transform Laws.
- All of these laws are illustrated with examples in the learning video Gesetzmäßigkeiten der Fouriertransformation .
- Solve this task with the help of the mapping theorem.
- Use the signal parameters A_u = 1\,\text{ V} and T = 1\,\text{ ms} for the first two subtasks.
Questions
Solution
- U( {f = 0.5\;{\rm{kHz}}} ) = - {\rm{j}} \cdot \frac{ {A_u \cdot T}}{ {\rm{\pi }}} \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) = - {\rm{j}} \cdot \frac{2}{ { {\rm{\pi }}^{\rm{2}} }} \cdot A_{\rm u} \cdot T.
- The imaginary part is numerically {\rm Im}[U(f=0.5 \,\text{kHz})]\; \underline{\approx 0.2 \,\text{mV/Hz}}.
- In contrast, the si function at f \cdot T = 1 yields the value zero, while the cosine is equal to -1 . Thus, with A_u = 1\,\text{V} and T = 1\,\text{ms} one obtains:
- U( {f = 1\;{\rm{kHz}}} ) = {\rm{j}} \cdot \frac{ {A_{\rm u} \cdot T}}{ { {\rm{2\pi }}}} \hspace{0.3 cm} \Rightarrow \hspace{0.3 cm} {\rm Re} [\text{...}] \hspace{0.15 cm}\underline{ = 0}, \hspace{0.3 cm}{\rm Im} [\text{...}] \hspace{0.15 cm}\underline{\approx 0.159 \;{\rm{mV/Hz}}}.
(2) According to the mapping theorem, an odd time function u(t) always has an imaginary and at the same time odd spectrum U( { - f} ) = - U( f ). With the boundary transition f \rightarrow \infty follows from the given equation
- U( f ) = - {\rm{j}} \cdot \frac{ {A_u \cdot T}}{ {2{\rm{\pi }}fT}}\big[ { {\mathop{\rm si}\nolimits} ( {{\rm{\pi }}fT} ) - \cos ( { {\rm{\pi }}fT} )} \big]
the result U(f = 0) = 0. Formally, one could confirm this result by applying l'Hospital's rule.
We proceed a little more pragmatically.
- For example, if we set f \cdot T = 0.01, we obtain:
U( {f \cdot T = 0.01}) = -{\rm{j}} \cdot \frac{ {A_{\rm u} \cdot T}}{{0.02{\rm{\pi }}}}\big[ {{\mathop{\rm si}\nolimits} ( {0.01{\rm{\pi }}} ) - \cos ( {0.01{\rm{\pi }}} )} \big ] = - {\rm{j}} \cdot \frac{ {A{\rm u} \cdot T}}{{0.02{\rm{\pi }}}}( {0.999836 - 0.999507} ) \approx - {\rm{j}} \cdot 5 \cdot 10^{ - 6} \;{\rm{V/Hz}}{\rm{.}}
- For even smaller frequency values, the result also becomes smaller and smaller.
- You get to the result U(f = 0)\;\underline{ = 0}, more quickly if you take into account that the integral over u(t) disappears.
- So you don't have to calculate at all.
(3) The signal x(t) can be divided into the even and the odd part, which lead to the even real part and the odd imaginary part of X(f) :
- The even part is equal to the function g(t) with A_g = 3\,\text{V}. From this follows for the real part of the spectral value at f \cdot T = 0.5:
- {\mathop{\rm Re}\nolimits} \left[ {X( {f \cdot T = 0.5} )} \right] = A_{\rm g} \cdot T \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \hspace{0.15 cm}\underline{= 1.91 \;{\rm{mV/Hz}}}{\rm{.}}
- The imaginary part results from the spectral function U(f) with A_u = 1\,\text{V}. This was already calculated in subtask (1) :
- {\mathop{\rm Im}\nolimits} \left[ {X( {f \cdot T = 0.5} )} \right] \hspace{0.15 cm}\underline{\approx - 0.2 \;{\rm{mV/Hz}}}{\rm{.}}