Difference between revisions of "Aufgaben:Exercise 3.6Z: Complex Exponential Function"
From LNTwww
m (Oezdemir moved page Aufgabe 3.6Z: Komplexe Exponentialfunktion to Exercise 3.6Z: Complex Exponential Function) |
|||
Line 4: | Line 4: | ||
[[File:P_ID518__Sig_Z_3_6_neu.png|right|frame|Darstellung im Spektralbereich: <br>komplexe Exponentialfunktion und geeignete Aufspaltung]] | [[File:P_ID518__Sig_Z_3_6_neu.png|right|frame|Darstellung im Spektralbereich: <br>komplexe Exponentialfunktion und geeignete Aufspaltung]] | ||
− | In | + | In connection with [[Signal_Representation/Differences_and_Similarities_of_LP_and_BP_Signals|bandpass systemes]] , one-sided spectra are often used. In the illustration you can see such a one-sided spectral function ${X(f)}$, which results in a complex time signal ${x(t)}$ . |
+ | In the sketch below, ${X(f)}$ is split into an even component ${G(f)}$ - with respect to the frequency - and an odd component ${U(f)}$ . | ||
− | |||
Line 15: | Line 15: | ||
− | + | ''Hints:'' | |
− | '' | + | *This exercise belongs to the chapter [[Signal_Representation/Fourier_Transform_Laws|Fourier Transform Laws]]. |
− | * | + | *All of the laws presented there are illustrated with examples in the learning video [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]]. |
− | * | + | *Solve this task with the help of the [[Signal_Representation/Fourier_Transform_Laws#Mapping_Theorem|Mapping Theorem]] and the [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]]. |
− | * | + | *Use the signal parameters $A = 1\, \text{V}$ and $f_0 = 125 \,\text{kHz}$ for the first two sub-tasks. |
− | * | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the time function $g(t)$ that fits $G(f)$? How large is $g(t = 1 \, µ \text {s})$? |
|type="{}"} | |type="{}"} | ||
$\text{Re}\big[g(t = 1 \, µ \text {s})\big] \ = \ $ { 0.707 3% } $\text{V}$ | $\text{Re}\big[g(t = 1 \, µ \text {s})\big] \ = \ $ { 0.707 3% } $\text{V}$ | ||
Line 33: | Line 32: | ||
− | { | + | {What is the time function $u(t)$ that fits $U(f)$? What is the value of $u(t = 1 \, µ \text {s})$? |
|type="{}"} | |type="{}"} | ||
$\text{Re}\big[u(t = 1 \, µ \text {s})\big]\ = \ $ { 0. } $\text{V}$ | $\text{Re}\big[u(t = 1 \, µ \text {s})\big]\ = \ $ { 0. } $\text{V}$ | ||
Line 39: | Line 38: | ||
− | { | + | {Which of the statements are true regarding the signal $x(t)$ ? |
− | + | + The signal is $x(t) = A \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi\hspace{0.05cm}\cdot \hspace{0.05cm} f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t}$. | |
− | + | + | - In the complex plane $x(t)$ rotates clockwise. |
− | - In | + | + In the complex plane $x(t)$ rotates counterclockwise. |
− | + In | + | - One microsecond is needed for one rotation. |
− | - | ||
Line 50: | Line 48: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' $G(f)$ | + | '''(1)''' $G(f)$ is the spectral function of a cosine signal with period $T_0 = 1/f_0 = 8 \, µ\text {s}$: |
:$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$ | :$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$ | ||
− | + | At $t = 1 \, µ\text {s}$ the signal value is equal to $A \cdot \cos(\pi /4)$: | |
− | * | + | *The real part is $\text{Re}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$, |
− | * | + | *The imaginary part is $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.}$ |
− | '''(2)''' | + | '''(2)''' Starting from the Fourier correspondence |
:$$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$ | :$$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$ | ||
− | + | is obtained by applying the shift theorem twice (in the frequency domain): | |
:$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$ | :$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$ | ||
− | * | + | *According to [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_Amplidute_and_Phase|Euler's theorem]] , this can also be written. |
:$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$ | :$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$ | ||
− | :* | + | :*The <u>real part of this signal is always zero.</u>. |
− | :* | + | :*At $t = 1 \, µ\text {s}$ the following applies to the imaginary part: $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$. |
− | '''(3)''' | + | '''(3)''' Because $X(f) = G(f) + U(f)$ also holds: |
:$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$ | :$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$ | ||
− | + | This result can be summarised by [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_Amplidute_and_Phase|Euler's theorem]] as follows: | |
:$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$ | :$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$ | ||
− | + | The given <u>alternatives 1 and 3</u> are correct: | |
− | * | + | *The signal rotates in the complex plane in a mathematically positive direction, i.e. counterclockwise. |
− | * | + | *For one rotation, the "pointer" needs the period $T_0 = 1/f_0 = 8 \, µ\text {s}$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 19:09, 27 January 2021
In connection with bandpass systemes , one-sided spectra are often used. In the illustration you can see such a one-sided spectral function ${X(f)}$, which results in a complex time signal ${x(t)}$ . In the sketch below, ${X(f)}$ is split into an even component ${G(f)}$ - with respect to the frequency - and an odd component ${U(f)}$ .
Hints:
- This exercise belongs to the chapter Fourier Transform Laws.
- All of the laws presented there are illustrated with examples in the learning video Gesetzmäßigkeiten der Fouriertransformation.
- Solve this task with the help of the Mapping Theorem and the Verschiebungssatzes.
- Use the signal parameters $A = 1\, \text{V}$ and $f_0 = 125 \,\text{kHz}$ for the first two sub-tasks.
Questions
Solution
(1) $G(f)$ is the spectral function of a cosine signal with period $T_0 = 1/f_0 = 8 \, µ\text {s}$:
- $$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$
At $t = 1 \, µ\text {s}$ the signal value is equal to $A \cdot \cos(\pi /4)$:
- The real part is $\text{Re}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$,
- The imaginary part is $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.}$
(2) Starting from the Fourier correspondence
- $$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$
is obtained by applying the shift theorem twice (in the frequency domain):
- $$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$
- According to Euler's theorem , this can also be written.
- $$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
- The real part of this signal is always zero..
- At $t = 1 \, µ\text {s}$ the following applies to the imaginary part: $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$.
(3) Because $X(f) = G(f) + U(f)$ also holds:
- $$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$
This result can be summarised by Euler's theorem as follows:
- $$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$
The given alternatives 1 and 3 are correct:
- The signal rotates in the complex plane in a mathematically positive direction, i.e. counterclockwise.
- For one rotation, the "pointer" needs the period $T_0 = 1/f_0 = 8 \, µ\text {s}$.