Difference between revisions of "Aufgaben:Exercise 4.5: Locality Curve for DSB-AM"

From LNTwww
Line 6: Line 6:
  
 
We consider a similar transmission scenario as in  [[Aufgaben:Aufgabe_4.4:_Zeigerdiagramm_bei_ZSB-AM|task 4.4]]  (but not the same):
 
We consider a similar transmission scenario as in  [[Aufgaben:Aufgabe_4.4:_Zeigerdiagramm_bei_ZSB-AM|task 4.4]]  (but not the same):
* a sinusoidal message signal with amplitude  $A_{\rm M} = 2 \ \text{V}$   and the frequency  $f_{\rm M} = 10 \ \text{kHz}$,
+
* a sinusoidal message signal with amplitude  $A_{\rm N} = 2 \ \text{V}$   and the frequency  $f_{\rm N} = 10 \ \text{kHz}$,
*DSB-Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm C} = 50 \ \text{kHz}$.
+
*DSB-Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm T} = 50 \ \text{kHz}$.
  
  
Line 14: Line 14:
 
When solving, take into account that the equivalent low pass signal is also in the form
 
When solving, take into account that the equivalent low pass signal is also in the form
 
   
 
   
:$$s_{\rm LP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$
+
:$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$
  
 
where&nbsp; $a(t) ≥ 0$&nbsp; shall hold. For&nbsp; $\phi(t)$&nbsp;, the range of values&nbsp; $–\pi < \phi(t) \leq +\pi$&nbsp; is permissible and the generally valid equation applies:
 
where&nbsp; $a(t) ≥ 0$&nbsp; shall hold. For&nbsp; $\phi(t)$&nbsp;, the range of values&nbsp; $–\pi < \phi(t) \leq +\pi$&nbsp; is permissible and the generally valid equation applies:
 
   
 
   
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
LP}(t)\big]}{{\rm Re}\big[s_{\rm LP}(t)\big]}.$$
+
TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$
  
  
Line 37: Line 37:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the equivalent low pass signal&nbsp; $s_{\rm LP}(t)$&nbsp; in the frequency and time domain. What is the value of&nbsp; $s_{\rm LP}(t)$&nbsp; at the start time&nbsp; $t = 0$?
+
{Calculate the equivalent low pass signal&nbsp; $s_{\rm TP}(t)$&nbsp; in the frequency and time domain. What is the value of&nbsp; $s_{\rm TP}(t)$&nbsp; at the start time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $  { 1 3% }  &nbsp;$\text{V}$
 
$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $  { 1 3% }  &nbsp;$\text{V}$
Line 44: Line 44:
 
{What are the values of&nbsp; $s_{\rm TP}(t)$&nbsp; at&nbsp; $t = 10 \ {\rm &micro;} \text{s}= T_0/10$, &nbsp; &nbsp; $t = 25 \ {\rm &micro;} \text{s}= T_0/4$, &nbsp; &nbsp; $t = 75 \ {\rm &micro;} \text{s}= 3T_0/4$&nbsp; and&nbsp; $T_0 = 100 \ {\rm &micro;}s$? <br>Show that all values are purely real.
 
{What are the values of&nbsp; $s_{\rm TP}(t)$&nbsp; at&nbsp; $t = 10 \ {\rm &micro;} \text{s}= T_0/10$, &nbsp; &nbsp; $t = 25 \ {\rm &micro;} \text{s}= T_0/4$, &nbsp; &nbsp; $t = 75 \ {\rm &micro;} \text{s}= 3T_0/4$&nbsp; and&nbsp; $T_0 = 100 \ {\rm &micro;}s$? <br>Show that all values are purely real.
 
|type="{}"}
 
|type="{}"}
$\text{Re}[s_{\text{LP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ $ { 2.176 3% } &nbsp;$\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ $ { 2.176 3% } &nbsp;$\text{V}$
$\text{Re}[s_{\text{LP}}(t=25 \ {\rm &micro;} \text{s})] \ = \ $ { 3 3% } &nbsp;$\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=25 \ {\rm &micro;} \text{s})] \ = \ $ { 3 3% } &nbsp;$\text{V}$
$\text{Re}[s_{\text{LP}}(t=75 \ {\rm &micro;} \text{s})]\ = \ $ { -1.03--0.97 } &nbsp;$\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=75 \ {\rm &micro;} \text{s})]\ = \ $ { -1.03--0.97 } &nbsp;$\text{V}$
$\text{Re}[s_{\text{LP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ $ { 1 3% } &nbsp;$\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ $ { 1 3% } &nbsp;$\text{V}$
  
 
{What is the magnitude function&nbsp; $a(t)$&nbsp; im Zeitbereich? in the time domain? What are the values at times&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; and&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
 
{What is the magnitude function&nbsp; $a(t)$&nbsp; im Zeitbereich? in the time domain? What are the values at times&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; and&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
Line 136: Line 136:
  
 
We restrict ourselves here to the time range of one period: &nbsp; $0 \leq t \leq T_0$.  
 
We restrict ourselves here to the time range of one period: &nbsp; $0 \leq t \leq T_0$.  
*In the range between&nbsp; $t_1$&nbsp; and&nbsp; $t_2$&nbsp; there is a phase of&nbsp; $180^\circ$&nbsp; otherwise&nbsp; $\text{Re}[s_{\rm LP}(t)] \geq 0$.  
+
*In the range between&nbsp; $t_1$&nbsp; and&nbsp; $t_2$&nbsp; there is a phase of&nbsp; $180^\circ$&nbsp; otherwise&nbsp; $\text{Re}[s_{\rm TP}(t)] \geq 0$.  
  
 
*To calculate&nbsp; $t_1$&nbsp;, the result of subtask&nbsp; '''(2)'''&nbsp; can be used:
 
*To calculate&nbsp; $t_1$&nbsp;, the result of subtask&nbsp; '''(2)'''&nbsp; can be used:

Revision as of 21:46, 15 February 2021

Spectrum of the analytical signal

We consider a similar transmission scenario as in  task 4.4  (but not the same):

  • a sinusoidal message signal with amplitude  $A_{\rm N} = 2 \ \text{V}$  and the frequency  $f_{\rm N} = 10 \ \text{kHz}$,
  • DSB-Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm T} = 50 \ \text{kHz}$.


Opposite you see the spectral function  $S_+(f)$  of the analytical signal  $s_+(t)$.

When solving, take into account that the equivalent low pass signal is also in the form

$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$

where  $a(t) ≥ 0$  shall hold. For  $\phi(t)$ , the range of values  $–\pi < \phi(t) \leq +\pi$  is permissible and the generally valid equation applies:

$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$





Hints:


Questions

1

Calculate the equivalent low pass signal  $s_{\rm TP}(t)$  in the frequency and time domain. What is the value of  $s_{\rm TP}(t)$  at the start time  $t = 0$?

$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $

 $\text{V}$
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $

 $\text{V}$

2

What are the values of  $s_{\rm TP}(t)$  at  $t = 10 \ {\rm µ} \text{s}= T_0/10$,     $t = 25 \ {\rm µ} \text{s}= T_0/4$,     $t = 75 \ {\rm µ} \text{s}= 3T_0/4$  and  $T_0 = 100 \ {\rm µ}s$?
Show that all values are purely real.

$\text{Re}[s_{\text{TP}}(t=10 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=25 \ {\rm µ} \text{s})] \ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=75 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$

3

What is the magnitude function  $a(t)$  im Zeitbereich? in the time domain? What are the values at times  $t = 25 \ {\rm µ} \text{s}$  and  $t = 75 \ {\rm µ} \text{s}$?

$a(t=25 \ {\rm µ} \text{s})\ = \ $

 $\text{V}$
$a(t=75 \ {\rm µ} \text{s})\ = \ $

 $\text{V}$

4

Give the phase function  $\phi(t)$  in the time domain in general. What values result at the times  $t = 25 \ {\rm µ} \text{s}$  and  $t = 75 \ {\rm µ} \text{s}$?

$\phi(t=25 \ {\rm µ} \text{s}) \ = \ $

 $\text{Grad}$
$\phi(t=75\ {\rm µ} \text{s})\ = \ $

 $\text{Grad}$


Solution

Locus curve at time  $t = 0$

(1)  If all diraclines are shifted to the left by  $f_{\rm C} = 50 \ \text{kHz}$ , they are located at  $-\hspace{-0.08cm}10 \ \text{kHz}$,  $0$  and  $+10 \ \text{kHz}$.

  • The equation for  $s_{\rm TP}(t)$  is with  $\omega_{10} = 2 \pi \cdot 10 \ \text{kHz}$:
$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }$$
$$\Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1 \hspace{0.05cm} V}.$$
$$\Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= {+\rm 1 \hspace{0.05cm} V}}, \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= 0} .$$


(2)  The above equation can be transformed according to  Euler's theorem  with  $T_0 = 1/f_{\rm N} = 100 \ {\rm µ} \text{s}$  as follows:

$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi {t}/{T_0}) .$$
  • This shows that  $s_{\rm TP}(t)$  is real for all times  $t$&nbsp .
  • For the numerical values we are looking for, we obtain:
$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +2.176 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +3 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{= -{{\rm 1 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 100 \hspace{0.1cm}{\rm µ} s}) = s_{\rm TP}(t = 0) \hspace{0.15 cm}\underline{={{\rm +1 \hspace{0.05cm} V}}}.$$


(3)  By definition,  $a(t) = |s_{\rm TP}(t)|$. This gives the following numerical values:

$$a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 \hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , \hspace{4.15 cm}$$
$$a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .$$


(4)  In general, the phase function is:

$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}$$

Due to the fact that here  ${\rm Im}[s_{\rm TP}(t)] = 0$  for all times, one obtains the result from this:

  • If  ${\rm Re}[s_{\rm TP}(t)] > 0$  holds, the phase  $\phi(t) = 0$.
  • On the other hand, if the real part is negative:     $\phi(t) = \pi$.


We restrict ourselves here to the time range of one period:   $0 \leq t \leq T_0$.

  • In the range between  $t_1$  and  $t_2$  there is a phase of  $180^\circ$  otherwise  $\text{Re}[s_{\rm TP}(t)] \geq 0$.
  • To calculate  $t_1$ , the result of subtask  (2)  can be used:
$$\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot {7}/{12}\hspace{0.3cm}{\rm (corresponds to}\hspace{0.2cm}210^\circ )$$
  • From this one obtains  $t_1 = 7/12 · T_0 = 58.33 \ {\rm µ} \text{s}$.
  • By similar reasoning one arrives at the result:  $t_2 = 11/12 · T_0 = 91.63 \ {\rm µ} \text{s}$.


The values we are looking for are therefore: 

$$\phi(t = 25 \ {\rm µ} \text{s}) \; \underline { = 0},$$
$$\phi(t = 75 \ {\rm µ} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).$$