Difference between revisions of "Aufgaben:Exercise 2.2Z: Real Two-Path Channel"

From LNTwww
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Mehrwegeempfang beim Mobilfunk}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Multipath_Reception_in_Mobile_Communications}}
  
[[File:P_ID2159__Mob_Z_2_2.png|right|frame|Zweiwege–Szenario]]
+
[[File:EN_Mob_A_2_2Z.png|right|frame|Two-path scenario]]
 
The sketched scenario is considered in which the transmitted signal  $s(t)$  reaches the antenna of the receiver via two paths:
 
The sketched scenario is considered in which the transmitted signal  $s(t)$  reaches the antenna of the receiver via two paths:
$$r(t) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} r_1(t) + r_2(t) =k_1 \cdot s( t - \dew_1) + k_2 \cdot s( t - \dew_2)
+
:$$r(t) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} r_1(t) + r_2(t) =k_1 \cdot s( t - \tau_1) + k_2 \cdot s( t - \tau_2)
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
 
Note the following:
 
Note the following:
* The runtimes  $\tau_1$  and  $\tau_2$  on main– and secondary path can be calculated from the path lengths  $d_1$  and  $d_2$  using the speed of light  $c = 3 \cdot 10^8 \ \rm m/s$ .
+
* The delays  $\tau_1$  and  $\tau_2$  of the main and the secondary paths can be calculated from the path lengths  $d_1$  and  $d_2$  using the speed of light  $c = 3 \cdot 10^8 \ \rm m/s$ .
* The amplitude factors  $k_1$  and  $k_2$  are to be assumed in a simplified way according to the path loss model with the path loss exponent  $\gamma = 2$  (free space attenuation).
+
* The amplitude factors  $k_1$  and  $k_2$  are obtained according to the path loss model with path loss exponent  $\gamma = 2$  (free–space attenuation).
* The height of the transmitting antenna is  $h_{\rm S} = 500 \ \rm m$, that of the receiving antenna  $h_{\rm E} = 30 \ \rm m$. The antennas are at a distance of  $d = 10 \ \ \rm km$.  
+
* The height of the transmit antenna is  $h_{\rm S} = 500 \ \rm m$.  The height of the receiving antenna is  $h_{\rm E} = 30 \ \rm m$.  The antennas are separated by a distance of  $d = 10 \ \ \rm km$.  
* The reflection on the secondary path causes a phase change of  $\pi$, so that the partial signals must be subtracted. This is taken into account by a negative  $k_2$–value.
+
* The reflection on the secondary path causes a phase change of  $\pi$, so that the partial signals must be subtracted.  This is taken into account by a negative  $k_2$ value.
  
  
Line 18: Line 18:
  
 
''Note:''  
 
''Note:''  
* This task belongs to the chapter  [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
+
* This task belongs to the chapter   [[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications| Multi–Path Reception in Mobile Communications]].
 
   
 
   
  
Line 25: Line 25:
 
===Questionnaire===
 
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the length&nbsp; $d_1$&nbsp; of the direct path
+
{Calculate the length&nbsp; $d_1$&nbsp; of the direct path.
 
|type="{}"}
 
|type="{}"}
 
$d_1 \ = \ ${ 10011 1% } $\ \ \rm m$
 
$d_1 \ = \ ${ 10011 1% } $\ \ \rm m$
  
{Calculate the length&nbsp; $d_2$&nbsp; of the detour path
+
{Calculate the length&nbsp; $d_2$&nbsp; of the reflected path.
 
|type="{}"}
 
|type="{}"}
 
$d_2 \ = \ ${ 10014 1% } $\ \ \rm m$
 
$d_2 \ = \ ${ 10014 1% } $\ \ \rm m$
Line 36: Line 36:
 
|type="{}"}
 
|type="{}"}
 
$\Delta d \ = \ ${ 2,996 3% } $\ \ \rm m$
 
$\Delta d \ = \ ${ 2,996 3% } $\ \ \rm m$
$\ Delta \tau \ = \ ${ 9,987 3% } $\ \ \rm ns$
+
$\Delta \tau \ = \ ${ 9,987 3% } $\ \ \rm ns$
  
{What equation results for the transit time difference&nbsp; $\delta \tau$&nbsp; with the approximation $\sqrt{(1 + \varepsilon)} \approx 1 + \varepsilon/2$ valid for small&nbsp; $\varepsilon$&nbsp;?
+
{What equation results for the path delay difference&nbsp; $\Delta \tau$&nbsp; with the approximation $\sqrt{(1 + \varepsilon)} \approx 1 + \varepsilon/2$&nbsp; valid for small&nbsp; $\varepsilon$&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
- $\Delta \tau = (h_{\rm S} \ - h_{\rm E})/d$,
 
- $\Delta \tau = (h_{\rm S} \ - h_{\rm E})/d$,
Line 46: Line 46:
 
{Which statements apply for the amplitude coefficients&nbsp; $k_1$&nbsp; and&nbsp; $k_2$&nbsp;?
 
{Which statements apply for the amplitude coefficients&nbsp; $k_1$&nbsp; and&nbsp; $k_2$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ The coefficients&nbsp; $k_1$&nbsp; and&nbsp; $k_2$&nbsp; are almost equal in amount.
+
+ The coefficients&nbsp; $k_1$&nbsp; and&nbsp; $k_2$&nbsp; are almost equal in magnitude.
- The amounts&nbsp; $|k_1|$&nbsp; and&nbsp; $|k_2|$&nbsp; differ significantly.
+
- The magnitudes&nbsp; $|k_1|$&nbsp; and&nbsp; $|k_2|$&nbsp; differ significantly.
 
+ The coefficients&nbsp; $|k_1|$&nbsp; and&nbsp; $|k_2|$&nbsp; differ in sign.
 
+ The coefficients&nbsp; $|k_1|$&nbsp; and&nbsp; $|k_2|$&nbsp; differ in sign.
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; According to &bdquo;Pythagoras&rdquo;:
+
'''(1)'''&nbsp; According to Pythagoras:
$$d_1 = \sqrt{d^2 + (h_{\rm S}- h_{\rm E})^2} = \sqrt{10^2 + (0.5- 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10011.039\,{\rm m}}
+
:$$d_1 = \sqrt{d^2 + (h_{\rm S}- h_{\rm E})^2} = \sqrt{10^2 + (0.5- 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10011.039\,{\rm m}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
 
*Actually, specifying such a length with an accuracy of one millimeter is not very useful and contradicts the mentality of an engineer.  
 
*Actually, specifying such a length with an accuracy of one millimeter is not very useful and contradicts the mentality of an engineer.  
*We have done this anyway to be able to check the accuracy of the approximation searched for in the subtask (4).
+
*We have done this anyway to be able to check the accuracy of the approximation in subtask&nbsp; '''(4)'''.
  
  
  
'''(2)'''&nbsp; If you fold the reflected beam right vpn $x_{\rm R}$ downwards (reflection on the ground), you get again a right-angled triangle. From this follows:
+
'''(2)'''&nbsp; If you fold the reflected beam on the right side of&nbsp; $x_{\rm R}$&nbsp; downwards&nbsp; (reflection on the ground), you get again a right triangle.&nbsp; From this follows:
$$d_2 = \sqrt{d^2 + (h_{\rm S}+ h_{\rm E})^2} = \sqrt{10^2 + (0.5+ 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10014.035\,{\rm m}}
+
:$$d_2 = \sqrt{d^2 + (h_{\rm S}+ h_{\rm E})^2} = \sqrt{10^2 + (0.5+ 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10014.035\,{\rm m}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; With the results from '''(1)''' and '''(2)''' you get for the lengths&ndash; and the runtime difference:
+
'''(3)'''&nbsp; Using the results from&nbsp; '''(1)'''&nbsp; and&nbsp; '''(2)''', the length and delay differences are:
:$$\Delta d = d_2 - d_1 = \hspace{0.1cm} \underline {=2,996\,{\rm m}
+
:$$\Delta d = d_2 - d_1 = \hspace{0.1cm} \underline {=2.996\,{\rm m}}
 
   \hspace{0.05cm},\hspace{1cm}
 
   \hspace{0.05cm},\hspace{1cm}
\delta \tau = \frac{\delta d}{c} = \frac{2,996\,{\rm m}}}{3 \cdot 10^8 \,{\rm m/s}}  \hspace{0.1cm} \underline {=9,987\,{\rm ns}
+
\Delta \tau = \frac{\Delta d}{c} = \frac{2.996\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s}}  \hspace{0.1cm} \underline {=9.987\,{\rm ns}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
'''(4)'''&nbsp; With $h_{\rm S} + h_{\rm E} \ll d$ the above equation can be expressed as follows:
+
 
$$d_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}- h_{\rm E})^2}{d^2} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}- h_{\rm E})^2}{2d^2} \right ] \hspace{0.05cm},\hspace{1cm}
+
'''(4)'''&nbsp; With&nbsp; $h_{\rm S} + h_{\rm E} \ll d$&nbsp; the above equation can be expressed as follows:
d_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{d^2} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{2d^2} \right ] $$
+
:$$d_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}- h_{\rm E})^2}{d^2}} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}- h_{\rm E})^2}{2d^2} \right ] \hspace{0.05cm},\hspace{1cm}
$$\Rightarrow \hspace{0.3cm} \delta d = d_2 - d_1 \approx \frac {1}{2d} \cdot \left [ (h_{\rm S}+ h_{\rm E})^2 - (h_{\rm S}- h_{\rm E})^2 \right ]
+
d_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{d^2}} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{2d^2} \right ] $$
  = \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{d}\hspace{0.3cm}
+
:$$\Rightarrow \hspace{0.3cm} \Delta d = d_2 - d_1 \approx \frac {1}{2d} \cdot \left [ (h_{\rm S}+ h_{\rm E})^2 - (h_{\rm S}- h_{\rm E})^2 \right ]
\Rightarrow \hspace{0.3cm} \delta \tau = \frac{\delta d}{c} \approx \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{c \cdot d}
+
  = \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{d}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} \Delta \tau = \frac{\Delta d}{c} \approx \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{c \cdot d}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*So the correct solution is the <u>solution 3</u>. With the given numerical values you get for this:
+
*So the correct solution is the <u>solution 3</u>.&nbsp; With the given numerical values, we have
$$\Delta \tau \approx \frac {2 \cdot 500\,{\rm m}\cdot 30\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s} \cdot 10000\,{\rm m}} = 10^{-8}\,{\rm s} = 10\,{\rm ns}
+
:$$\Delta \tau \approx \frac {2 \cdot 500\,{\rm m}\cdot 30\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s} \cdot 10000\,{\rm m}} = 10^{-8}\,{\rm s} = 10\,{\rm ns}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*The relative falsification to the actual value according to the subtask '''(3)'' is only $0.13\%$.  
+
*The relative error with respect to the actual value according to the subtask&nbsp; '''(3)'''&nbsp; is only&nbsp; $0.13\%$.  
*In solution 1 the unit is already wrong.  
+
*In solutions 1 and 2, the dimensions are wrong.  
*In solution 2, there would be no propagation delay if both antennas were the same height. This is certainly not true.
+
*In solution 2, there would be no propagation delay if both antennas were the same height.&nbsp; This is clearly not true.
  
  
  
'''(5)'''&nbsp; The path loss exponent $\gamma = 2$ says that the reception power $P_{\rm E}$ decreases quadratically with distance.  
+
'''(5)'''&nbsp; The path loss exponent&nbsp; $\gamma = 2$&nbsp; implies that the reception power&nbsp; $P_{\rm E}$&nbsp; decreases quadratically with distance.  
*The signal amplitude thus decreases with $1/d$, and with a constant $K$ applies:
+
*The signal amplitude thus decreases with&nbsp; $1/d$, so for some constant&nbsp; $K$&nbsp; we have
 
:$$k_1 = \frac {K}{d_1} \hspace{0.05cm},\hspace{0.2cm}|k_2| = \frac {K}{d_2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
:$$k_1 = \frac {K}{d_1} \hspace{0.05cm},\hspace{0.2cm}|k_2| = \frac {K}{d_2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   \frac {|k_2|}{k_1} = \frac {d_1}{d_2}= \frac {10011,039\,{\rm m}}{10014,035\,{\rm m}} \approx 0.99 \hspace{0.05cm}.$$
 
   \frac {|k_2|}{k_1} = \frac {d_1}{d_2}= \frac {10011,039\,{\rm m}}{10014,035\,{\rm m}} \approx 0.99 \hspace{0.05cm}.$$
  
*The two path weights thus only differ in amount by about $1\%$.  
+
*The two path weights thus only differ in magnitude by about&nbsp; $1\%$.  
*However, the coefficients $k_1$ and $k_2$ have different signs &nbsp; &#8658; &nbsp; Correct are the <u>answers 1 and 3</u>.
+
*In addition, the coefficients&nbsp; $k_1$&nbsp; and&nbsp; $k_2$&nbsp; have different signs &nbsp; &#8658; &nbsp; <u>Answers 1 and 3</u>&nbsp; are correct.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]]
+
[[Category:Mobile Communications: Exercises|^2.2 Multi-Path Reception in Wireless Systems^]]

Latest revision as of 13:37, 23 March 2021

Two-path scenario

The sketched scenario is considered in which the transmitted signal  $s(t)$  reaches the antenna of the receiver via two paths:

$$r(t) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} r_1(t) + r_2(t) =k_1 \cdot s( t - \tau_1) + k_2 \cdot s( t - \tau_2) \hspace{0.05cm}.$$

Note the following:

  • The delays  $\tau_1$  and  $\tau_2$  of the main and the secondary paths can be calculated from the path lengths  $d_1$  and  $d_2$  using the speed of light  $c = 3 \cdot 10^8 \ \rm m/s$ .
  • The amplitude factors  $k_1$  and  $k_2$  are obtained according to the path loss model with path loss exponent  $\gamma = 2$  (free–space attenuation).
  • The height of the transmit antenna is  $h_{\rm S} = 500 \ \rm m$.  The height of the receiving antenna is  $h_{\rm E} = 30 \ \rm m$.  The antennas are separated by a distance of  $d = 10 \ \ \rm km$.
  • The reflection on the secondary path causes a phase change of  $\pi$, so that the partial signals must be subtracted.  This is taken into account by a negative  $k_2$ value.



Note:



Questionnaire

1

Calculate the length  $d_1$  of the direct path.

$d_1 \ = \ $

$\ \ \rm m$

2

Calculate the length  $d_2$  of the reflected path.

$d_2 \ = \ $

$\ \ \rm m$

3

Which differences  $\Delta d = d_2 \ - d_1$  and  $\Delta \tau = \tau_2 -\tau_1$  (term) result from exact calculation?

$\Delta d \ = \ $

$\ \ \rm m$
$\Delta \tau \ = \ $

$\ \ \rm ns$

4

What equation results for the path delay difference  $\Delta \tau$  with the approximation $\sqrt{(1 + \varepsilon)} \approx 1 + \varepsilon/2$  valid for small  $\varepsilon$ ?

$\Delta \tau = (h_{\rm S} \ - h_{\rm E})/d$,
$\Delta \tau = (h_{\rm S} \ - h_{\rm E})/(c \cdot d)$,
$\Delta \tau = 2 \cdot h_{\rm S} \cdot h_{\rm E}/(c \cdot d)$.

5

Which statements apply for the amplitude coefficients  $k_1$  and  $k_2$ ?

The coefficients  $k_1$  and  $k_2$  are almost equal in magnitude.
The magnitudes  $|k_1|$  and  $|k_2|$  differ significantly.
The coefficients  $|k_1|$  and  $|k_2|$  differ in sign.


Solution

(1)  According to Pythagoras:

$$d_1 = \sqrt{d^2 + (h_{\rm S}- h_{\rm E})^2} = \sqrt{10^2 + (0.5- 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10011.039\,{\rm m}} \hspace{0.05cm}.$$
  • Actually, specifying such a length with an accuracy of one millimeter is not very useful and contradicts the mentality of an engineer.
  • We have done this anyway to be able to check the accuracy of the approximation in subtask  (4).


(2)  If you fold the reflected beam on the right side of  $x_{\rm R}$  downwards  (reflection on the ground), you get again a right triangle.  From this follows:

$$d_2 = \sqrt{d^2 + (h_{\rm S}+ h_{\rm E})^2} = \sqrt{10^2 + (0.5+ 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10014.035\,{\rm m}} \hspace{0.05cm}.$$


(3)  Using the results from  (1)  and  (2), the length and delay differences are:

$$\Delta d = d_2 - d_1 = \hspace{0.1cm} \underline {=2.996\,{\rm m}} \hspace{0.05cm},\hspace{1cm} \Delta \tau = \frac{\Delta d}{c} = \frac{2.996\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s}} \hspace{0.1cm} \underline {=9.987\,{\rm ns}} \hspace{0.05cm}.$$


(4)  With  $h_{\rm S} + h_{\rm E} \ll d$  the above equation can be expressed as follows:

$$d_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}- h_{\rm E})^2}{d^2}} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}- h_{\rm E})^2}{2d^2} \right ] \hspace{0.05cm},\hspace{1cm} d_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{d^2}} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{2d^2} \right ] $$
$$\Rightarrow \hspace{0.3cm} \Delta d = d_2 - d_1 \approx \frac {1}{2d} \cdot \left [ (h_{\rm S}+ h_{\rm E})^2 - (h_{\rm S}- h_{\rm E})^2 \right ] = \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{d}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \Delta \tau = \frac{\Delta d}{c} \approx \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{c \cdot d} \hspace{0.05cm}.$$
  • So the correct solution is the solution 3.  With the given numerical values, we have
$$\Delta \tau \approx \frac {2 \cdot 500\,{\rm m}\cdot 30\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s} \cdot 10000\,{\rm m}} = 10^{-8}\,{\rm s} = 10\,{\rm ns} \hspace{0.05cm}.$$
  • The relative error with respect to the actual value according to the subtask  (3)  is only  $0.13\%$.
  • In solutions 1 and 2, the dimensions are wrong.
  • In solution 2, there would be no propagation delay if both antennas were the same height.  This is clearly not true.


(5)  The path loss exponent  $\gamma = 2$  implies that the reception power  $P_{\rm E}$  decreases quadratically with distance.

  • The signal amplitude thus decreases with  $1/d$, so for some constant  $K$  we have
$$k_1 = \frac {K}{d_1} \hspace{0.05cm},\hspace{0.2cm}|k_2| = \frac {K}{d_2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac {|k_2|}{k_1} = \frac {d_1}{d_2}= \frac {10011,039\,{\rm m}}{10014,035\,{\rm m}} \approx 0.99 \hspace{0.05cm}.$$
  • The two path weights thus only differ in magnitude by about  $1\%$.
  • In addition, the coefficients  $k_1$  and  $k_2$  have different signs   ⇒   Answers 1 and 3  are correct.