Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.2Z: Real Two-Path Channel"

From LNTwww
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Mehrwegeempfang beim Mobilfunk}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Multipath_Reception_in_Mobile_Communications}}
  
[[File:P_ID2159__Mob_Z_2_2.png|right|frame|Zweiwege–Szenario]]
+
[[File:EN_Mob_A_2_2Z.png|right|frame|Two-path scenario]]
 
The sketched scenario is considered in which the transmitted signal  s(t)  reaches the antenna of the receiver via two paths:
 
The sketched scenario is considered in which the transmitted signal  s(t)  reaches the antenna of the receiver via two paths:
$$r(t) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} r_1(t) + r_2(t) =k_1 \cdot s( t - \tau_1) + k_2 \cdot s( t - \tau_2)
+
:$$r(t) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} r_1(t) + r_2(t) =k_1 \cdot s( t - \tau_1) + k_2 \cdot s( t - \tau_2)
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
 
Note the following:
 
Note the following:
* The delays  τ1  and  τ2  of the main and secondary paths can be calculated from the path lengths  d1  and  d2  using the speed of light  c=3108 m/s .
+
* The delays  τ1  and  τ2  of the main and the secondary paths can be calculated from the path lengths  d1  and  d2  using the speed of light  c=3108 m/s .
* The amplitude factors  k1  and  k2  are obtained according to the path loss model with path loss exponent  γ=2  (free-space attenuation).
+
* The amplitude factors  k1  and  k2  are obtained according to the path loss model with path loss exponent  γ=2  (free–space attenuation).
* The height of the transmit antenna is  hS=500 m. The height of the receiving antenna is  hE=30 m. The antennas are separated by a distance of  d=10  km.  
+
* The height of the transmit antenna is  hS=500 m.  The height of the receiving antenna is  hE=30 m.  The antennas are separated by a distance of  d=10  km.  
* The reflection on the secondary path causes a phase change of  π, so that the partial signals must be subtracted. This is taken into account by a negative  k2 value.
+
* The reflection on the secondary path causes a phase change of  π, so that the partial signals must be subtracted.  This is taken into account by a negative  k2 value.
  
  
Line 18: Line 18:
  
 
''Note:''  
 
''Note:''  
* This task belongs to the chapter  [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
+
* This task belongs to the chapter   [[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications| Multi–Path Reception in Mobile Communications]].
 
   
 
   
  
Line 25: Line 25:
 
===Questionnaire===
 
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the length&nbsp; d1&nbsp; of the direct path
+
{Calculate the length&nbsp; d1&nbsp; of the direct path.
 
|type="{}"}
 
|type="{}"}
 
d1 = { 10011 1% }   m
 
d1 = { 10011 1% }   m
  
{Calculate the length&nbsp; d2&nbsp; of the reflected path
+
{Calculate the length&nbsp; d2&nbsp; of the reflected path.
 
|type="{}"}
 
|type="{}"}
 
d2 = { 10014 1% }   m
 
d2 = { 10014 1% }   m
Line 36: Line 36:
 
|type="{}"}
 
|type="{}"}
 
Δd = { 2,996 3% }   m
 
Δd = { 2,996 3% }   m
 Deltaτ = { 9,987 3% }   ns
+
Δτ = { 9,987 3% }   ns
  
{What equation results for the path delay difference&nbsp; $\delta \tau&nbsp; with the approximation\sqrt{(1 + \varepsilon)} \approx 1 + \varepsilon/2valid for small&nbsp;\varepsilon$&nbsp;?
+
{What equation results for the path delay difference&nbsp; $\Delta \tau&nbsp; with the approximation\sqrt{(1 + \varepsilon)} \approx 1 + \varepsilon/2$&nbsp; valid for small&nbsp; ε&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
- Δτ=(hS hE)/d,
 
- Δτ=(hS hE)/d,
Line 51: Line 51:
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; According to &bdquo;Pythagoras&rdquo;:
+
'''(1)'''&nbsp; According to Pythagoras:
$$d_1 = \sqrt{d^2 + (h_{\rm S}- h_{\rm E})^2} = \sqrt{10^2 + (0.5- 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10011.039\,{\rm m}}
+
:$$d_1 = \sqrt{d^2 + (h_{\rm S}- h_{\rm E})^2} = \sqrt{10^2 + (0.5- 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10011.039\,{\rm m}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
 
*Actually, specifying such a length with an accuracy of one millimeter is not very useful and contradicts the mentality of an engineer.  
 
*Actually, specifying such a length with an accuracy of one millimeter is not very useful and contradicts the mentality of an engineer.  
*We have done this anyway to be able to check the accuracy of the approximation searched for in the subtask (4).
+
*We have done this anyway to be able to check the accuracy of the approximation in subtask&nbsp; '''(4)'''.
  
  
  
'''(2)'''&nbsp; If you fold the reflected beam right vpn xR downwards (reflection on the ground), you get again a right-angled triangle. From this follows:
+
'''(2)'''&nbsp; If you fold the reflected beam on the right side of&nbsp; xR&nbsp; downwards&nbsp; (reflection on the ground), you get again a right triangle.&nbsp; From this follows:
$$d_2 = \sqrt{d^2 + (h_{\rm S}+ h_{\rm E})^2} = \sqrt{10^2 + (0.5+ 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10014.035\,{\rm m}}
+
:$$d_2 = \sqrt{d^2 + (h_{\rm S}+ h_{\rm E})^2} = \sqrt{10^2 + (0.5+ 0.03)^2} \,\,{\rm km} \hspace{0.1cm} \underline {=10014.035\,{\rm m}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; With the results from '''(1)''' and '''(2)''' you get for the lengths&ndash; and the runtime difference:
+
'''(3)'''&nbsp; Using the results from&nbsp; '''(1)'''&nbsp; and&nbsp; '''(2)''', the length and delay differences are:
:$$\Delta d = d_2 - d_1 = \hspace{0.1cm} \underline {=2,996\,{\rm m}
+
:$$\Delta d = d_2 - d_1 = \hspace{0.1cm} \underline {=2.996\,{\rm m}}
 
   \hspace{0.05cm},\hspace{1cm}
 
   \hspace{0.05cm},\hspace{1cm}
\delta \tau = \frac{\delta d}{c} = \frac{2,996\,{\rm m}}}{3 \cdot 10^8 \,{\rm m/s}}  \hspace{0.1cm} \underline {=9,987\,{\rm ns}
+
\Delta \tau = \frac{\Delta d}{c} = \frac{2.996\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s}}  \hspace{0.1cm} \underline {=9.987\,{\rm ns}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
'''(4)'''&nbsp; With hS+hEd the above equation can be expressed as follows:
+
 
$$d_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}- h_{\rm E})^2}{d^2} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}- h_{\rm E})^2}{2d^2} \right ] \hspace{0.05cm},\hspace{1cm}
+
'''(4)'''&nbsp; With&nbsp; hS+hEd&nbsp; the above equation can be expressed as follows:
d_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{d^2} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{2d^2} \right ] $$
+
:$$d_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}- h_{\rm E})^2}{d^2}} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}- h_{\rm E})^2}{2d^2} \right ] \hspace{0.05cm},\hspace{1cm}
$$\Rightarrow \hspace{0.3cm} \delta d = d_2 - d_1 \approx \frac {1}{2d} \cdot \left [ (h_{\rm S}+ h_{\rm E})^2 - (h_{\rm S}- h_{\rm E})^2 \right ]
+
d_2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} d \cdot \sqrt{1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{d^2}} \approx d \cdot \left [ 1 + \frac{(h_{\rm S}+ h_{\rm E})^2}{2d^2} \right ] $$
  = \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{d}\hspace{0.3cm}
+
:$$\Rightarrow \hspace{0.3cm} \Delta d = d_2 - d_1 \approx \frac {1}{2d} \cdot \left [ (h_{\rm S}+ h_{\rm E})^2 - (h_{\rm S}- h_{\rm E})^2 \right ]
\Rightarrow \hspace{0.3cm} \delta \tau = \frac{\delta d}{c} \approx \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{c \cdot d}
+
  = \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{d}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} \Delta \tau = \frac{\Delta d}{c} \approx \frac {2 \cdot h_{\rm S}\cdot h_{\rm E}}{c \cdot d}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*So the correct solution is the <u>solution 3</u>. With the given numerical values you get for this:
+
*So the correct solution is the <u>solution 3</u>.&nbsp; With the given numerical values, we have
$$\Delta \tau \approx \frac {2 \cdot 500\,{\rm m}\cdot 30\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s} \cdot 10000\,{\rm m}} = 10^{-8}\,{\rm s} = 10\,{\rm ns}
+
:$$\Delta \tau \approx \frac {2 \cdot 500\,{\rm m}\cdot 30\,{\rm m}}{3 \cdot 10^8 \,{\rm m/s} \cdot 10000\,{\rm m}} = 10^{-8}\,{\rm s} = 10\,{\rm ns}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*The relative falsification to the actual value according to the subtask '''(3)'' is only 0.13%.  
+
*The relative error with respect to the actual value according to the subtask&nbsp; '''(3)'''&nbsp; is only&nbsp; 0.13%.  
*In solution 1 the unit is already wrong.  
+
*In solutions 1 and 2, the dimensions are wrong.  
*In solution 2, there would be no propagation delay if both antennas were the same height. This is certainly not true.
+
*In solution 2, there would be no propagation delay if both antennas were the same height.&nbsp; This is clearly not true.
  
  
  
'''(5)'''&nbsp; The path loss exponent γ=2 says that the reception power PE decreases quadratically with distance.  
+
'''(5)'''&nbsp; The path loss exponent&nbsp; γ=2&nbsp; implies that the reception power&nbsp; PE&nbsp; decreases quadratically with distance.  
*The signal amplitude thus decreases with 1/d, and with a constant K applies:
+
*The signal amplitude thus decreases with&nbsp; 1/d, so for some constant&nbsp; K&nbsp; we have
 
:$$k_1 = \frac {K}{d_1} \hspace{0.05cm},\hspace{0.2cm}|k_2| = \frac {K}{d_2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
:$$k_1 = \frac {K}{d_1} \hspace{0.05cm},\hspace{0.2cm}|k_2| = \frac {K}{d_2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   \frac {|k_2|}{k_1} = \frac {d_1}{d_2}= \frac {10011,039\,{\rm m}}{10014,035\,{\rm m}} \approx 0.99 \hspace{0.05cm}.$$
 
   \frac {|k_2|}{k_1} = \frac {d_1}{d_2}= \frac {10011,039\,{\rm m}}{10014,035\,{\rm m}} \approx 0.99 \hspace{0.05cm}.$$
  
*The two path weights thus only differ in amount by about 1%.  
+
*The two path weights thus only differ in magnitude by about&nbsp; 1%.  
*However, the coefficients k1 and k2 have different signs &nbsp; &#8658; &nbsp; Correct are the <u>answers 1 and 3</u>.
+
*In addition, the coefficients&nbsp; k1&nbsp; and&nbsp; k2&nbsp; have different signs &nbsp; &#8658; &nbsp; <u>Answers 1 and 3</u>&nbsp; are correct.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]]
+
[[Category:Mobile Communications: Exercises|^2.2 Multi-Path Reception in Wireless Systems^]]

Latest revision as of 14:37, 23 March 2021

Two-path scenario

The sketched scenario is considered in which the transmitted signal  s(t)  reaches the antenna of the receiver via two paths:

r(t) = r1(t)+r2(t)=k1s(tτ1)+k2s(tτ2).

Note the following:

  • The delays  τ1  and  τ2  of the main and the secondary paths can be calculated from the path lengths  d1  and  d2  using the speed of light  c=3108 m/s .
  • The amplitude factors  k1  and  k2  are obtained according to the path loss model with path loss exponent  γ=2  (free–space attenuation).
  • The height of the transmit antenna is  hS=500 m.  The height of the receiving antenna is  hE=30 m.  The antennas are separated by a distance of  d=10  km.
  • The reflection on the secondary path causes a phase change of  π, so that the partial signals must be subtracted.  This is taken into account by a negative  k2 value.



Note:



Questionnaire

1

Calculate the length  d1  of the direct path.

d1 = 

  m

2

Calculate the length  d2  of the reflected path.

d2 = 

  m

3

Which differences  Δd=d2 d1  and  Δτ=τ2τ1  (term) result from exact calculation?

Δd = 

  m
Δτ = 

  ns

4

What equation results for the path delay difference  Δτ  with the approximation (1+ε)1+ε/2  valid for small  ε ?

Δτ=(hS hE)/d,
Δτ=(hS hE)/(cd),
Δτ=2hShE/(cd).

5

Which statements apply for the amplitude coefficients  k1  and  k2 ?

The coefficients  k1  and  k2  are almost equal in magnitude.
The magnitudes  |k1|  and  |k2|  differ significantly.
The coefficients  |k1|  and  |k2|  differ in sign.


Solution

(1)  According to Pythagoras:

d1=d2+(hShE)2=102+(0.50.03)2km=10011.039m_.
  • Actually, specifying such a length with an accuracy of one millimeter is not very useful and contradicts the mentality of an engineer.
  • We have done this anyway to be able to check the accuracy of the approximation in subtask  (4).


(2)  If you fold the reflected beam on the right side of  xR  downwards  (reflection on the ground), you get again a right triangle.  From this follows:

d2=d2+(hS+hE)2=102+(0.5+0.03)2km=10014.035m_.


(3)  Using the results from  (1)  and  (2), the length and delay differences are:

Δd=d2d1==2.996m_,Δτ=Δdc=2.996m3108m/s=9.987ns_.


(4)  With  hS+hEd  the above equation can be expressed as follows:

d1 = d1+(hShE)2d2d[1+(hShE)22d2],d2 = d1+(hS+hE)2d2d[1+(hS+hE)22d2]
Δd=d2d112d[(hS+hE)2(hShE)2]=2hShEdΔτ=Δdc2hShEcd.
  • So the correct solution is the solution 3.  With the given numerical values, we have
Δτ2500m30m3108m/s10000m=108s=10ns.
  • The relative error with respect to the actual value according to the subtask  (3)  is only  0.13%.
  • In solutions 1 and 2, the dimensions are wrong.
  • In solution 2, there would be no propagation delay if both antennas were the same height.  This is clearly not true.


(5)  The path loss exponent  γ=2  implies that the reception power  PE  decreases quadratically with distance.

  • The signal amplitude thus decreases with  1/d, so for some constant  K  we have
k1=Kd1,|k2|=Kd2|k2|k1=d1d2=10011,039m10014,035m0.99.
  • The two path weights thus only differ in magnitude by about  1%.
  • In addition, the coefficients  k1  and  k2  have different signs   ⇒   Answers 1 and 3  are correct.