Difference between revisions of "Aufgaben:Exercise 2.5: Scatter Function"
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises") |
|||
(18 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Mobile_Communications/The_GWSSUS_Channel_Model}} |
− | [[File:P_ID2164__Mob_A_2_5.png|right|frame| | + | [[File:P_ID2164__Mob_A_2_5.png|right|frame|Delay-Doppler profile]] |
− | For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier | + | For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transform. With the nomenclature from our tutorial, these are: |
− | * the time-variant impulse response $h(\tau, \hspace{0.05cm}t)$, which we also | + | * the time-variant impulse response $h(\tau, \hspace{0.05cm}t)$, which we also denote here as $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$, |
− | * the delay | + | * the delay-Doppler function $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$, |
− | * the frequency | + | * the frequency-Doppler function $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$, |
− | * the time variant transfer function $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$ or $H(f, \hspace{0.05cm}t)$. | + | * the time-variant transfer function $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$ or $H(f, \hspace{0.05cm}t)$. |
− | The | + | The four possible system functions are uniformly denoted by $\boldsymbol{\eta}_{12}$ .<br> |
− | + | *The first subindex is either a $\boldsymbol{\rm V}$ $($because of German $\rm V\hspace{-0.05cm}$erzögerung ⇒ delay time $\tau)$ or a $\boldsymbol{\rm F}$ $($frequency $f)$.<br> | |
− | $$\eta_{\rm VD}(\ | + | |
− | :$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\ | + | *Either a $\boldsymbol{\rm Z}$ $($because of German $\rm Z\hspace{-0.05cm}$eit ⇒ time $t)$ or a $\boldsymbol{\rm D}$ $($Doppler frequency $f_{\rm D})$ is possible as the second subindex. |
− | \frac{1}{2} \cdot \delta (\ | + | |
+ | |||
+ | The delay–Doppler function $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$ is shown in the plot: | ||
+ | :$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$ | ||
+ | :$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})- | ||
+ | \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | In the literature $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ often also called | + | In the literature, $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ is often also called '''scatter function''' and denoted with $s(\tau, \hspace{0.05cm}f_{\rm D})$ . |
− | |||
− | |||
+ | In this task, the associated delay–time function $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$ and the frequency–Doppler function $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$ are to be determined. | ||
Line 29: | Line 33: | ||
''Notes:'' | ''Notes:'' | ||
− | * This | + | * This exercise should clarify the subject matter of the chapter [[Mobile_Communications/The_GWSSUS_Channel_Model| The GWSSUS Channel Model]]. |
− | * The relationship between the individual system functions is given in the [[ | + | * The relationship between the individual system functions is given in the [[Mobile_Communications/The_GWSSUS_Channel_Model#Generalized_system_functions_of_time_variant_systems|graph on the first page]] of this chapter. |
*Note that the magnitude function $|\eta_{\rm VD}(\tau, \hspace{0.05cm} f_{\rm D})|$ is shown above, so negative weights of the Dirac functions cannot be recognized. | *Note that the magnitude function $|\eta_{\rm VD}(\tau, \hspace{0.05cm} f_{\rm D})|$ is shown above, so negative weights of the Dirac functions cannot be recognized. | ||
Line 37: | Line 41: | ||
===Questionnaire=== | ===Questionnaire=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | + | {At which values of $\tau$ there are the components of 2D impulse response $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$ ? | |
|type="[]"} | |type="[]"} | ||
+ $\tau = 0$, | + $\tau = 0$, | ||
Line 43: | Line 47: | ||
- other $\tau$–values. | - other $\tau$–values. | ||
− | {Calculate $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$. Which of the following statements | + | {Calculate $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$. Which of the following statements are true? |
|type="()"} | |type="()"} | ||
+ $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$ is independent of $t$. | + $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$ is independent of $t$. | ||
− | - | + | - $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$. |
− | - | + | - $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$. |
− | {Calculate $|\eta_{\rm VZ}(\ | + | {Calculate $|\eta_{\rm VZ}(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)|$. Which of the following statements are true? |
|type="()"} | |type="()"} | ||
- $|\eta_{\rm VZ}(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)|$ is independent of $t$. | - $|\eta_{\rm VZ}(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)|$ is independent of $t$. | ||
− | + | + | + $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$. |
− | - | + | - $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$. |
− | { | + | {Consider the frequency–Doppler representation $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$. For which values of $f_{\rm D}$ is this function <b>not</b> equal to zero? |
|type="[]"} | |type="[]"} | ||
- $f_{\rm D} = 0$, | - $f_{\rm D} = 0$, | ||
Line 61: | Line 65: | ||
- $f_{\rm D} = ± 100 \ \rm Hz$. | - $f_{\rm D} = ± 100 \ \rm Hz$. | ||
− | {Which of the following statements | + | {Which of the following statements are true for $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$? |
|type="()"} | |type="()"} | ||
− | + $|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$ is independent of | + | + $|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$ is independent of $f_{\rm D}$. |
− | - | + | - $\eta_{\rm FD}(f, \hspace{0.05cm} f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \cos {(2\pi t_0 f)}$. |
− | - | + | - $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \sin {(2\pi t_0 f)}$. |
− | {How do you get the time variant transfer function $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$? | + | {How do you get the time-variant transfer function $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$? |
|type="[]"} | |type="[]"} | ||
− | - By Fourier transformation of $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$ | + | - By Fourier transformation of $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$ with respect to $\tau$. |
− | + By Fourier transformation of $\eta_{\rm VZ}(\ | + | + By Fourier transformation of $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$ with respect to $\tau$. |
− | + By Fourier | + | + By inverse Fourier transformation of $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$ with respect to $f_{\rm D}$. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
− | + | {{ML-Kopf}} | |
− | '''(1)''' The time variant impulse response $h(\tau, \hspace{0.05cm} t) = \eta_{\rm VZ}(\tau, \hspace{0. 05cm} t)$ is the Fourier | + | '''(1)''' The time-variant impulse response $h(\tau, \hspace{0.05cm} t) = \eta_{\rm VZ}(\tau, \hspace{0.05cm} t)$ is the inverse Fourier transform of the delay–Doppler function $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D}) = s(\tau, \hspace{0.05cm} f_{\rm D})$: |
− | $$\eta_{\rm VZ}(\ | + | :$$\eta_{\rm VZ}(\tau, \hspace{0.05cm} t) |
− | \hspace{0.2cm} \stackrel{t, \hspace{0.02cm}f_{\rm D}{\circ | + | \hspace{0.2cm} \stackrel{t, \hspace{0.02cm}f_{\rm D}}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.$$ |
− | *Accordingly, $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ | + | *Accordingly, $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)=0$ for the values of $\tau$ that make $\eta_{\rm VD}(\tau, f_{\rm D})=0$. |
− | * | + | *Correct are therefore the <u>solutions 1 and 2</u>: <br>Only for $\tau = 0$ and $\tau = 1 \ \ \rm \mu s$ does the time-variant impulse response have non-zero values. |
− | '''(2)''' For the delay $\tau = 0$ the scatter& | + | '''(2)''' For the delay $\tau = 0$, the scatter function $\eta_{\rm VD}$ consists of a single Dirac at $f_{\rm D} = 100 \ \rm Hz$. |
− | * | + | *According to the second Fourier integral, the desired time-domain function satisfies: |
− | $$\eta_{\rm VZ}(\tau = 0, t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \int\limits_{-\infty}^{+\infty} \delta (f_{\rm D} - 100\,{\rm Hz}) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}f_{\rm D} =\frac{1}{\sqrt{2}} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi t \hspace{0.05cm}\cdot \hspace{0.05cm}100\,{\rm Hz}} .$$ | + | :$$\eta_{\rm VZ}(\tau = 0, t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \int\limits_{-\infty}^{+\infty} \delta (f_{\rm D} - 100\,{\rm Hz}) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}f_{\rm D} =\frac{1}{\sqrt{2}} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi t \hspace{0.05cm}\cdot \hspace{0.05cm}100\,{\rm Hz}} .$$ |
− | * | + | *Correct is <u>solution 1</u>. |
− | '''(3)''' For the delay | + | '''(3)''' For the delay $\tau = 1 \ \ \rm µ s$ the delay–Doppler function consists of two Dirac functions at $±50 \ \rm Hz$, each with weight $-0.5$. |
− | *The time function | + | *The time function is $\eta_{\rm VZ}(\tau = 1\,{\rm \mu s}, t) = - \cos( 2 \pi t \cdot 50\,{\rm Hz})\hspace{0.05cm}.$ |
− | |||
− | *This function can be represented with $A = -1$ and $f_0 = 50 \ \rm Hz$ according to <u>solution 2</u>. | + | *This function can be represented with $A = -1$ and $f_0 = 50 \ \rm Hz$ according to <u>solution 2</u>. |
− | '''(4)''' The three Dirac functions $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ are at the Doppler frequencies $+100 \ \rm Hz$, $+50 \ \rm Hz$ and $-50 \ \rm Hz$. | + | '''(4)''' The three Dirac functions $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ are at the Doppler frequencies $+100 \ \rm Hz$, $+50 \ \rm Hz$ and $-50 \ \rm Hz$. |
− | *For all other Doppler frequencies, | + | *For all other Doppler frequencies, we must have $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}) \equiv 0$. |
− | * | + | *<u>Solution 2</u> is correct. |
− | '''(5) | + | '''(5)''' If you look at the scatter function $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ in the direction of the $\tau$–axis, there is one Dirac function at each of the Doppler frequencies $100 \ \rm Hz$ and $±50 \ \rm Hz$. |
− | *Here, depending on $f$, complex exponential oscillations with constant magnitude result in each case (from which it follows that | + | *Here, depending on $f$, complex exponential oscillations with constant magnitude result in each case (from which it follows that <u>solution 1</u> is correct): |
− | $$|\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 100\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{\sqrt{2}} = {\rm const.}$$ | + | :$$|\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 100\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{\sqrt{2}} = {\rm const.}$$ |
− | $$| \eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}= \pm 50\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5 = {\rm const.}$$ | + | :$$| \eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}= \pm 50\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5 = {\rm const.}$$ |
− | [[File: | + | [[File:P_ID2168__Mob_A_2_5e_neu.png|right|frame|Relationships between all system functions]] |
− | '''(6)''' As can be seen from the given [[Mobile_Communications/ | + | '''(6)''' As can be seen from the given [[Mobile_Communications/The_GWSSUS_Channel_Model#Generalized_system_functions_of_time_variant_systems|graph]], <u>solutions 2 and 3</u> are correct. |
− | *The | + | *The graph shows all system functions. |
*The Fourier correspondences (shown in green) illustrate the relationships between these system functions. | *The Fourier correspondences (shown in green) illustrate the relationships between these system functions. | ||
Line 124: | Line 127: | ||
''Note:'' | ''Note:'' | ||
− | Compare the time-variant transfer function $|\eta_{\rm FZ}(f, \hspace{0.05cm} t)|$ in the figure | + | Compare the time-variant transfer function $|\eta_{\rm FZ}(f, \hspace{0.05cm} t)|$ in the bottom right figure with the corresponding graph in [[Aufgaben:Exercise_2.4:_2-D_Transfer_Function| Exercise 2.4]]: |
− | *The respective | + | *The respective magnitude functions differ significantly, although $|\eta_{\rm VZ}(\tau, t)|$ is the same in both cases. |
− | *In | + | *In Exercise 2.4, a cosine was implicitly assumed for $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, t)$; here we have a negative cosine function. |
− | *The (not explicitly) specified delay–Doppler function for | + | *The (not explicitly) specified delay–Doppler function for Exercise 2.4 was |
− | $$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \delta (\ | + | :$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})+$$ |
− | $$\hspace{2cm}+\hspace{0.22cm}\frac{1}{2} \cdot \delta (\ | + | :$$\hspace{2cm}+\hspace{0.22cm}\frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})+ $$ |
− | $$\hspace{2cm}+\hspace{0.22cm} \frac{1}{2} \cdot \delta (\ | + | :$$\hspace{2cm}+\hspace{0.22cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | *Comparison with the equation | + | *Comparison with the equation in this task shows that only the signs of the Diracs have changed at $\tau = 1 \ \rm µ s$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 139: | Line 142: | ||
− | [[Category: | + | [[Category:Mobile Communications: Exercises|^2.3 The GWSSUS Channel Model^]] |
Latest revision as of 13:37, 23 March 2021
For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transform. With the nomenclature from our tutorial, these are:
- the time-variant impulse response $h(\tau, \hspace{0.05cm}t)$, which we also denote here as $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$,
- the delay-Doppler function $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$,
- the frequency-Doppler function $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$,
- the time-variant transfer function $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$ or $H(f, \hspace{0.05cm}t)$.
The four possible system functions are uniformly denoted by $\boldsymbol{\eta}_{12}$ .
- The first subindex is either a $\boldsymbol{\rm V}$ $($because of German $\rm V\hspace{-0.05cm}$erzögerung ⇒ delay time $\tau)$ or a $\boldsymbol{\rm F}$ $($frequency $f)$.
- Either a $\boldsymbol{\rm Z}$ $($because of German $\rm Z\hspace{-0.05cm}$eit ⇒ time $t)$ or a $\boldsymbol{\rm D}$ $($Doppler frequency $f_{\rm D})$ is possible as the second subindex.
The delay–Doppler function $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$ is shown in the plot:
- $$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$
- $$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})- \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) \hspace{0.05cm}.$$
In the literature, $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ is often also called scatter function and denoted with $s(\tau, \hspace{0.05cm}f_{\rm D})$ .
In this task, the associated delay–time function $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$ and the frequency–Doppler function $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$ are to be determined.
Notes:
- This exercise should clarify the subject matter of the chapter The GWSSUS Channel Model.
- The relationship between the individual system functions is given in the graph on the first page of this chapter.
- Note that the magnitude function $|\eta_{\rm VD}(\tau, \hspace{0.05cm} f_{\rm D})|$ is shown above, so negative weights of the Dirac functions cannot be recognized.
Questionnaire
Solution
- $$\eta_{\rm VZ}(\tau, \hspace{0.05cm} t) \hspace{0.2cm} \stackrel{t, \hspace{0.02cm}f_{\rm D}}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.$$
- Accordingly, $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)=0$ for the values of $\tau$ that make $\eta_{\rm VD}(\tau, f_{\rm D})=0$.
- Correct are therefore the solutions 1 and 2:
Only for $\tau = 0$ and $\tau = 1 \ \ \rm \mu s$ does the time-variant impulse response have non-zero values.
(2) For the delay $\tau = 0$, the scatter function $\eta_{\rm VD}$ consists of a single Dirac at $f_{\rm D} = 100 \ \rm Hz$.
- According to the second Fourier integral, the desired time-domain function satisfies:
- $$\eta_{\rm VZ}(\tau = 0, t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \int\limits_{-\infty}^{+\infty} \delta (f_{\rm D} - 100\,{\rm Hz}) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}f_{\rm D} =\frac{1}{\sqrt{2}} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi t \hspace{0.05cm}\cdot \hspace{0.05cm}100\,{\rm Hz}} .$$
- Correct is solution 1.
(3) For the delay $\tau = 1 \ \ \rm µ s$ the delay–Doppler function consists of two Dirac functions at $±50 \ \rm Hz$, each with weight $-0.5$.
- The time function is $\eta_{\rm VZ}(\tau = 1\,{\rm \mu s}, t) = - \cos( 2 \pi t \cdot 50\,{\rm Hz})\hspace{0.05cm}.$
- This function can be represented with $A = -1$ and $f_0 = 50 \ \rm Hz$ according to solution 2.
(4) The three Dirac functions $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ are at the Doppler frequencies $+100 \ \rm Hz$, $+50 \ \rm Hz$ and $-50 \ \rm Hz$.
- For all other Doppler frequencies, we must have $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}) \equiv 0$.
- Solution 2 is correct.
(5) If you look at the scatter function $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ in the direction of the $\tau$–axis, there is one Dirac function at each of the Doppler frequencies $100 \ \rm Hz$ and $±50 \ \rm Hz$.
- Here, depending on $f$, complex exponential oscillations with constant magnitude result in each case (from which it follows that solution 1 is correct):
- $$|\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 100\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{\sqrt{2}} = {\rm const.}$$
- $$| \eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}= \pm 50\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5 = {\rm const.}$$
(6) As can be seen from the given graph, solutions 2 and 3 are correct.
- The graph shows all system functions.
- The Fourier correspondences (shown in green) illustrate the relationships between these system functions.
Note:
Compare the time-variant transfer function $|\eta_{\rm FZ}(f, \hspace{0.05cm} t)|$ in the bottom right figure with the corresponding graph in Exercise 2.4:
- The respective magnitude functions differ significantly, although $|\eta_{\rm VZ}(\tau, t)|$ is the same in both cases.
- In Exercise 2.4, a cosine was implicitly assumed for $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, t)$; here we have a negative cosine function.
- The (not explicitly) specified delay–Doppler function for Exercise 2.4 was
- $$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})+$$
- $$\hspace{2cm}+\hspace{0.22cm}\frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})+ $$
- $$\hspace{2cm}+\hspace{0.22cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) \hspace{0.05cm}.$$
- Comparison with the equation in this task shows that only the signs of the Diracs have changed at $\tau = 1 \ \rm µ s$.