Difference between revisions of "Aufgaben:Exercise 2.5: Scatter Function"

From LNTwww
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}}
+
{{quiz-Header|Buchseite=Mobile_Communications/The_GWSSUS_Channel_Model}}
  
[[File:P_ID2164__Mob_A_2_5.png|right|frame|Verzögerungs–Doppler–Funktion]]
+
[[File:P_ID2164__Mob_A_2_5.png|right|frame|Delay-Doppler profile]]
For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transform. With the nomenclature from our learning tutorial, these are:
+
For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transform.  With the nomenclature from our tutorial, these are:
* the time-variant impulse response  $h(\tau, \hspace{0.05cm}t)$, which we also denote here as  $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$ ,
+
* the time-variant impulse response  $h(\tau, \hspace{0.05cm}t)$, which we also denote here as  $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$,
 
* the delay-Doppler function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$,
 
* the delay-Doppler function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$,
 
* the frequency-Doppler function  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$,  
 
* the frequency-Doppler function  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$,  
Line 10: Line 10:
  
  
The indices represent the delay (<b>V</b>) $\tau$, the time (<b>Z</b>) &nbsp; $t$, the frequency (<b>F</b>)&nbsp; $f$&nbsp; and the Doppler frequency (<b>D</b>)&nbsp; $f_{\rm D}$.
+
The four possible system functions are uniformly denoted by&nbsp; $\boldsymbol{\eta}_{12}$&nbsp;.<br>
  
The delay&ndash;Doppler function&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; is shown in the top plot:
+
*The first subindex is either a&nbsp; $\boldsymbol{\rm V}$&nbsp; $($because of German&nbsp; $\rm V\hspace{-0.05cm}$erzögerung &nbsp; &rArr; &nbsp; delay time &nbsp;$\tau)$&nbsp; or&nbsp; a&nbsp; $\boldsymbol{\rm F}$&nbsp; $($frequency&nbsp; $f)$.<br>
 +
 
 +
*Either a&nbsp; $\boldsymbol{\rm Z}$&nbsp; $($because of German&nbsp; $\rm Z\hspace{-0.05cm}$eit &nbsp; &rArr; &nbsp; time &nbsp;$t)$&nbsp;  or a&nbsp; $\boldsymbol{\rm D}$&nbsp; $($Doppler frequency&nbsp; $f_{\rm D})$&nbsp; is possible as the second subindex.
 +
 
 +
 
 +
The delay&ndash;Doppler function&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; is shown in the plot:
 
:$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$
 
:$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$
 
:$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})-  
 
:$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})-  
Line 18: Line 23:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In the literature,&nbsp; $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp; is often also called <i>scatter function</i> and denoted with&nbsp; $s(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp;.
+
In the literature,&nbsp; $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp; is often also called&nbsp; '''scatter function'''&nbsp; and denoted with&nbsp; $s(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp;.
  
 
In this task, the associated delay&ndash;time function&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; and the frequency&ndash;Doppler function&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$&nbsp; are to be determined.
 
In this task, the associated delay&ndash;time function&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; and the frequency&ndash;Doppler function&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$&nbsp; are to be determined.
 +
 +
 +
  
  
  
 
''Notes:''
 
''Notes:''
* This task should clarify the subject matter of the chapter&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS&ndash;Kanalmodell]].
+
* This exercise should clarify the subject matter of the chapter&nbsp; [[Mobile_Communications/The_GWSSUS_Channel_Model| The GWSSUS Channel Model]].
* The relationship between the individual system functions is given in the&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme|graph on the first page]]&nbsp; of this chapter.
+
* The relationship between the individual system functions is given in the&nbsp; [[Mobile_Communications/The_GWSSUS_Channel_Model#Generalized_system_functions_of_time_variant_systems|graph on the first page]]&nbsp; of this chapter.
 
*Note that the magnitude function&nbsp; $|\eta_{\rm VD}(\tau, \hspace{0.05cm} f_{\rm D})|$&nbsp; is shown above, so negative weights of the Dirac functions cannot be recognized.  
 
*Note that the magnitude function&nbsp; $|\eta_{\rm VD}(\tau, \hspace{0.05cm} f_{\rm D})|$&nbsp; is shown above, so negative weights of the Dirac functions cannot be recognized.  
  
Line 33: Line 41:
 
===Questionnaire===
 
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{At which values of &nbsp; $\tau$ are the components of 2D impulse response&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp;?
+
{At which values of&nbsp; $\tau$&nbsp; there are the components of 2D impulse response&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
+ $\tau = 0$,
 
+ $\tau = 0$,
Line 39: Line 47:
 
- other $\tau$&ndash;values.
 
- other $\tau$&ndash;values.
  
{Calculate&nbsp; $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$. Which of the following statements are true?
+
{Calculate&nbsp; $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$.&nbsp; Which of the following statements are true?
 
|type="()"}
 
|type="()"}
 
+ $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$&nbsp; is independent of&nbsp; $t$.
 
+ $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$&nbsp; is independent of&nbsp; $t$.
Line 45: Line 53:
 
- &nbsp; $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
 
- &nbsp; $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
  
{Calculate&nbsp; $|\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$. Which of the following statements are true?
+
{Calculate&nbsp; $|\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$.&nbsp; Which of the following statements are true?
 
|type="()"}
 
|type="()"}
 
- $|\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$&nbsp; is independent of&nbsp; $t$.
 
- $|\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)|$&nbsp; is independent of&nbsp; $t$.
Line 51: Line 59:
 
- &nbsp; $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
 
- &nbsp; $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.
  
{Consider now the frequency&ndash;Doppler representation&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$. For which values of &nbsp; $f_{\rm D}$ is this function <b>not</b> equal to zero?
+
{Consider the frequency&ndash;Doppler representation&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$.&nbsp; For which values of&nbsp; $f_{\rm D}$ is this function <b>not</b> equal to zero?
 
|type="[]"}
 
|type="[]"}
 
- $f_{\rm D} = 0$,
 
- $f_{\rm D} = 0$,
Line 59: Line 67:
 
{Which of the following statements are true for&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$?
 
{Which of the following statements are true for&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$?
 
|type="()"}
 
|type="()"}
+ $|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$&nbsp; is independent of&nbsp; $f_{\rm D}$.
+
+ $|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$&nbsp; is independent of $f_{\rm D}$.
 
- &nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm} f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \cos {(2\pi t_0 f)}$.
 
- &nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm} f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \cos {(2\pi t_0 f)}$.
 
- &nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \sin {(2\pi t_0 f)}$.
 
- &nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \sin {(2\pi t_0 f)}$.
Line 65: Line 73:
 
{How do you get the time-variant transfer function&nbsp; $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$?
 
{How do you get the time-variant transfer function&nbsp; $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$?
 
|type="[]"}
 
|type="[]"}
- By Fourier transformation of&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; with respect to &nbsp; $\tau$.
+
- By Fourier transformation of&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; with respect to&nbsp; $\tau$.
 
+ By Fourier transformation of&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; with respect to&nbsp; $\tau$.
 
+ By Fourier transformation of&nbsp; $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$&nbsp; with respect to&nbsp; $\tau$.
+ By Fourier inverse transformation of&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$&nbsp; with respect to&nbsp; $f_{\rm D}$.
+
+ By inverse Fourier transformation of&nbsp; $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$&nbsp; with respect to $f_{\rm D}$.
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The time-variant impulse response $h(\tau, \hspace{0.05cm} t) = \eta_{\rm VZ}(\tau, \hspace{0.05cm} t)$ is the inverse Fourier transform of the delay&ndash;Doppler function $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D}) = s(\tau, \hspace{0.05cm} f_{\rm D})$:
+
'''(1)'''&nbsp; The time-variant impulse response&nbsp; $h(\tau, \hspace{0.05cm} t) = \eta_{\rm VZ}(\tau, \hspace{0.05cm} t)$&nbsp; is the inverse Fourier transform of the delay&ndash;Doppler function&nbsp; $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D}) = s(\tau, \hspace{0.05cm} f_{\rm D})$:
 
:$$\eta_{\rm VZ}(\tau, \hspace{0.05cm} t)
 
:$$\eta_{\rm VZ}(\tau, \hspace{0.05cm} t)
 
  \hspace{0.2cm}  \stackrel{t, \hspace{0.02cm}f_{\rm D}}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.$$
 
  \hspace{0.2cm}  \stackrel{t, \hspace{0.02cm}f_{\rm D}}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.$$
  
 
+
*Accordingly,&nbsp; $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)=0$&nbsp; for the values of&nbsp; $\tau$&nbsp; that make&nbsp; $\eta_{\rm VD}(\tau, f_{\rm D})=0$.  
*Accordingly, $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)=0$ for the values of $\tau$ that make $\eta_{\rm VD}(\tau, f_{\rm D})=0$.  
+
*Correct are therefore the <u>solutions 1 and 2</u>:&nbsp; <br>Only for&nbsp; $\tau = 0$&nbsp; and&nbsp; $\tau = 1 \ \ \rm \mu s$&nbsp; does the time-variant impulse response have non-zero values.
*The <u>solutions 1 and 2</u> are therefore correct: Only for $\tau = 0$ and $\tau = 1 \ \ \rm \mu s$ does the time variant impulse response have nonzero values.
 
  
  
  
'''(2)'''&nbsp; For the delay $\tau = 0$, the scatter function ($\eta_{\rm VD}$) consists of a single Dirac at $f_{\rm D} = 100 \ \rm Hz$.  
+
'''(2)'''&nbsp; For the delay&nbsp; $\tau = 0$, the scatter function&nbsp; $\eta_{\rm VD}$&nbsp; consists of a single Dirac at $f_{\rm D} = 100 \ \rm Hz$.  
 
*According to the second Fourier integral, the desired time-domain function satisfies:
 
*According to the second Fourier integral, the desired time-domain function satisfies:
 
:$$\eta_{\rm VZ}(\tau = 0, t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \int\limits_{-\infty}^{+\infty} \delta (f_{\rm D} - 100\,{\rm Hz}) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}f_{\rm D} =\frac{1}{\sqrt{2}} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi  t \hspace{0.05cm}\cdot \hspace{0.05cm}100\,{\rm Hz}} .$$
 
:$$\eta_{\rm VZ}(\tau = 0, t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \int\limits_{-\infty}^{+\infty} \delta (f_{\rm D} - 100\,{\rm Hz}) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}f_{\rm D} =\frac{1}{\sqrt{2}} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi  t \hspace{0.05cm}\cdot \hspace{0.05cm}100\,{\rm Hz}} .$$
  
*The correct solution is therefore <u>solution 1</u>.
+
*Correct is <u>solution 1</u>.
  
  
  
'''(3)'''&nbsp; For the delay $\tau = 1 \ \ \rm &micro; s$ the delay&ndash;Doppler function consists of two Dirac functions at $&plusmn;50 \ \rm Hz$, each with weight $-0.5$.  
+
'''(3)'''&nbsp; For the delay&nbsp;  $\tau = 1 \ \ \rm &micro; s$&nbsp; the delay&ndash;Doppler function consists of two Dirac functions at&nbsp; $&plusmn;50 \ \rm Hz$, each with weight&nbsp; $-0.5$.  
*The time function is then
+
*The time function is&nbsp;  $\eta_{\rm VZ}(\tau = 1\,{\rm \mu s}, t) = - \cos( 2 \pi t \cdot 50\,{\rm Hz})\hspace{0.05cm}.$
$$\eta_{\rm VZ}(\tau = 1\,{\rm \mu s}, t) = - \cos( 2 \pi t \cdot 50\,{\rm Hz})\hspace{0.05cm}.$$
 
  
*This function can be represented with $A = -1$ and $f_0 = 50 \ \rm Hz$ according to <u>solution 2</u>.
+
*This function can be represented with&nbsp; $A = -1$&nbsp; and&nbsp; $f_0 = 50 \ \rm Hz$&nbsp; according to <u>solution 2</u>.
  
  
  
'''(4)'''&nbsp; The three Dirac functions $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ are at the Doppler frequencies $+100 \ \rm Hz$, $+50 \ \rm Hz$ and $-50 \ \rm Hz$.  
+
'''(4)'''&nbsp; The three Dirac functions&nbsp; $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp; are at the Doppler frequencies&nbsp; $+100 \ \rm Hz$, $+50 \ \rm Hz$&nbsp; and&nbsp; $-50 \ \rm Hz$.  
*For all other Doppler frequencies, therefore, we must have $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}) \equiv 0$.  
+
*For all other Doppler frequencies, we must have&nbsp; $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}) \equiv 0$.  
*<u>Solution 2</u> is therefore correct.
+
*<u>Solution 2</u> is correct.
  
  
  
'''(5)''''&nbsp; If one looks at the scatter&ndash;function $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$ in the direction of the $\tau$&ndash;axis, one recognizes only one Dirac function each at the Doppler frequencies $100 \ \rm Hz$ and $&plusmn;50 \ \rm Hz$.  
+
'''(5)'''&nbsp; If you look at the scatter function&nbsp; $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$&nbsp; in the direction of the&nbsp; $\tau$&ndash;axis, there is one Dirac function at each of the Doppler frequencies&nbsp; $100 \ \rm Hz$&nbsp; and&nbsp; $&plusmn;50 \ \rm Hz$.  
*Here, depending on $f$, complex exponential oscillations with constant magnitude result in each case (from which it follows that the <u>solution 1</u> is correct):
+
*Here, depending on $f$,&nbsp; complex exponential oscillations with constant magnitude result in each case&nbsp; (from which it follows that <u>solution 1</u> is correct):
$$|\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 100\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{\sqrt{2}} = {\rm const.}$$
+
:$$|\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 100\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{\sqrt{2}} = {\rm const.}$$
$$| \eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}= \pm 50\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5 = {\rm const.}$$
+
:$$| \eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}= \pm 50\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5 = {\rm const.}$$
  
  
  
[[File:P_ID2168__Mob_A_2_5e_new.png|right|frame|interrelation of all system functions]]
+
[[File:P_ID2168__Mob_A_2_5e_neu.png|right|frame|Relationships between all system functions]]
'''(6)'''&nbsp; As can be seen from the given [[Mobile_Communications/The_GWSSUS%E2%80%93Channel Model#Generalized_System Functions_Time-Variant_Systems|Graphics]], the <u>solution alternatives 2 and 3</u> are applicable.
+
'''(6)'''&nbsp; As can be seen from the given [[Mobile_Communications/The_GWSSUS_Channel_Model#Generalized_system_functions_of_time_variant_systems|graph]], <u>solutions 2 and 3</u> are correct.
  
*The graphic shows all system functions.  
+
*The graph shows all system functions.  
 
*The Fourier correspondences (shown in green) illustrate the relationships between these system functions.
 
*The Fourier correspondences (shown in green) illustrate the relationships between these system functions.
  
Line 121: Line 127:
 
''Note:''  
 
''Note:''  
  
Compare the time-variant transfer function $|\eta_{\rm FZ}(f, \hspace{0.05cm} t)|$ in the figure below right with the corresponding graphic for [[Tasks:Task_2.4:_2D-Transfer Function| Task 2.4]]:  
+
Compare the time-variant transfer function&nbsp; $|\eta_{\rm FZ}(f, \hspace{0.05cm} t)|$&nbsp; in the bottom right figure with the corresponding graph in&nbsp; [[Aufgaben:Exercise_2.4:_2-D_Transfer_Function| Exercise 2.4]]:  
*The respective amount functions shown differ significantly, although $|\eta_{\rm VZ}(\tau, t)|$ is the same in both cases.  
+
*The respective magnitude functions differ significantly, although&nbsp; $|\eta_{\rm VZ}(\tau, t)|$&nbsp; is the same in both cases.  
*In task 2.4, a cosine was implicitly assumed for $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, t)$, here a minus&ndash;cosine function.  
+
*In Exercise 2.4, a cosine was implicitly assumed for&nbsp; $\eta_{\rm VZ}(\tau = 1 \ {\rm &micro; s}, t)$;&nbsp; here we have a negative cosine function.  
*The (not explicitly) specified delay&ndash;Doppler function for task 2.4 was
+
*The (not explicitly) specified delay&ndash;Doppler function for Exercise 2.4 was
$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})+$
+
:$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})+$$
$$\hspace{2cm}+\hspace{0.22cm}\frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})+ $
+
:$$\hspace{2cm}+\hspace{0.22cm}\frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})+ $$
$$\hspace{2cm}+\hspace{0.22cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz})  
+
:$$\hspace{2cm}+\hspace{0.22cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz})  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Comparison with the equation on the [[Tasks:2.5_Scatter-Function|Specifications]] shows that only the signs of the Diracs have changed at $\tau = 1 \ \rm &micro; s$.
+
*Comparison with the equation in this task shows that only the signs of the Diracs have changed at&nbsp; $\tau = 1 \ \rm &micro; s$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
Line 136: Line 142:
  
  
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]
+
[[Category:Mobile Communications: Exercises|^2.3 The GWSSUS Channel Model^]]

Latest revision as of 13:37, 23 March 2021

Delay-Doppler profile

For the mobile radio channel as a time-variant system, there are a total of four system functions that are linked with each other via the Fourier transform.  With the nomenclature from our tutorial, these are:

  • the time-variant impulse response  $h(\tau, \hspace{0.05cm}t)$, which we also denote here as  $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)$,
  • the delay-Doppler function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$,
  • the frequency-Doppler function  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$,
  • the time-variant transfer function  $\eta_{\rm FZ}(f,\hspace{0.05cm}t)$  or  $H(f, \hspace{0.05cm}t)$.


The four possible system functions are uniformly denoted by  $\boldsymbol{\eta}_{12}$ .

  • The first subindex is either a  $\boldsymbol{\rm V}$  $($because of German  $\rm V\hspace{-0.05cm}$erzögerung   ⇒   delay time  $\tau)$  or  a  $\boldsymbol{\rm F}$  $($frequency  $f)$.
  • Either a  $\boldsymbol{\rm Z}$  $($because of German  $\rm Z\hspace{-0.05cm}$eit   ⇒   time  $t)$  or a  $\boldsymbol{\rm D}$  $($Doppler frequency  $f_{\rm D})$  is possible as the second subindex.


The delay–Doppler function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$  is shown in the plot:

$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})-$$
$$\hspace{1.75cm} \ - \ \hspace{-0.1cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})- \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) \hspace{0.05cm}.$$

In the literature,  $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$  is often also called  scatter function  and denoted with  $s(\tau, \hspace{0.05cm}f_{\rm D})$ .

In this task, the associated delay–time function  $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$  and the frequency–Doppler function  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$  are to be determined.




Notes:

  • This exercise should clarify the subject matter of the chapter  The GWSSUS Channel Model.
  • The relationship between the individual system functions is given in the  graph on the first page  of this chapter.
  • Note that the magnitude function  $|\eta_{\rm VD}(\tau, \hspace{0.05cm} f_{\rm D})|$  is shown above, so negative weights of the Dirac functions cannot be recognized.


Questionnaire

1

At which values of  $\tau$  there are the components of 2D impulse response  $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$ ?

$\tau = 0$,
$\tau = 1 \ \rm µ s$,
other $\tau$–values.

2

Calculate  $|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm}t)|$.  Which of the following statements are true?

$|\eta_{\rm VZ}(\tau = 0,\hspace{0.05cm} t)|$  is independent of  $t$.
  $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
  $\eta_{\rm VZ}(\tau = 0, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.

3

Calculate  $|\eta_{\rm VZ}(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)|$.  Which of the following statements are true?

$|\eta_{\rm VZ}(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)|$  is independent of  $t$.
  $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, \hspace{0.05cm}t) = A \cdot \cos {(2\pi f_0 t)}$.
  $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, \hspace{0.05cm}t) = A \cdot \sin {(2\pi f_0 t)}$.

4

Consider the frequency–Doppler representation  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D})$.  For which values of  $f_{\rm D}$ is this function not equal to zero?

$f_{\rm D} = 0$,
$f_{\rm D} = ± 50 \ \rm Hz$,
$f_{\rm D} = ± 100 \ \rm Hz$.

5

Which of the following statements are true for  $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$?

$|\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D} = 100 \ \rm Hz)|$  is independent of $f_{\rm D}$.
  $\eta_{\rm FD}(f, \hspace{0.05cm} f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \cos {(2\pi t_0 f)}$.
  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 50 \ {\rm Hz}) = A \cdot \sin {(2\pi t_0 f)}$.

6

How do you get the time-variant transfer function  $\eta_{\rm FZ}(f, \hspace{0.05cm}t)$?

By Fourier transformation of  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D})$  with respect to  $\tau$.
By Fourier transformation of  $\eta_{\rm VZ}(\tau, \hspace{0.05cm}t)$  with respect to  $\tau$.
By inverse Fourier transformation of  $\eta_{\rm FD}(f,\hspace{0.05cm} f_{\rm D})$  with respect to $f_{\rm D}$.


Solution

(1)  The time-variant impulse response  $h(\tau, \hspace{0.05cm} t) = \eta_{\rm VZ}(\tau, \hspace{0.05cm} t)$  is the inverse Fourier transform of the delay–Doppler function  $\eta_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D}) = s(\tau, \hspace{0.05cm} f_{\rm D})$:

$$\eta_{\rm VZ}(\tau, \hspace{0.05cm} t) \hspace{0.2cm} \stackrel{t, \hspace{0.02cm}f_{\rm D}}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.$$
  • Accordingly,  $\eta_{\rm VZ}(\tau,\hspace{0.05cm} t)=0$  for the values of  $\tau$  that make  $\eta_{\rm VD}(\tau, f_{\rm D})=0$.
  • Correct are therefore the solutions 1 and 2
    Only for  $\tau = 0$  and  $\tau = 1 \ \ \rm \mu s$  does the time-variant impulse response have non-zero values.


(2)  For the delay  $\tau = 0$, the scatter function  $\eta_{\rm VD}$  consists of a single Dirac at $f_{\rm D} = 100 \ \rm Hz$.

  • According to the second Fourier integral, the desired time-domain function satisfies:
$$\eta_{\rm VZ}(\tau = 0, t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \int\limits_{-\infty}^{+\infty} \delta (f_{\rm D} - 100\,{\rm Hz}) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \pi f_{\rm D} t}\hspace{0.15cm}{\rm d}f_{\rm D} =\frac{1}{\sqrt{2}} \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi t \hspace{0.05cm}\cdot \hspace{0.05cm}100\,{\rm Hz}} .$$
  • Correct is solution 1.


(3)  For the delay  $\tau = 1 \ \ \rm µ s$  the delay–Doppler function consists of two Dirac functions at  $±50 \ \rm Hz$, each with weight  $-0.5$.

  • The time function is  $\eta_{\rm VZ}(\tau = 1\,{\rm \mu s}, t) = - \cos( 2 \pi t \cdot 50\,{\rm Hz})\hspace{0.05cm}.$
  • This function can be represented with  $A = -1$  and  $f_0 = 50 \ \rm Hz$  according to solution 2.


(4)  The three Dirac functions  $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$  are at the Doppler frequencies  $+100 \ \rm Hz$, $+50 \ \rm Hz$  and  $-50 \ \rm Hz$.

  • For all other Doppler frequencies, we must have  $\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}) \equiv 0$.
  • Solution 2 is correct.


(5)  If you look at the scatter function  $\eta_{\rm VD}(\tau, \hspace{0.05cm}f_{\rm D})$  in the direction of the  $\tau$–axis, there is one Dirac function at each of the Doppler frequencies  $100 \ \rm Hz$  and  $±50 \ \rm Hz$.

  • Here, depending on $f$,  complex exponential oscillations with constant magnitude result in each case  (from which it follows that solution 1 is correct):
$$|\eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D} = 100\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{\sqrt{2}} = {\rm const.}$$
$$| \eta_{\rm FD}(f, \hspace{0.05cm}f_{\rm D}= \pm 50\,{\rm Hz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5 = {\rm const.}$$


Relationships between all system functions

(6)  As can be seen from the given graph, solutions 2 and 3 are correct.

  • The graph shows all system functions.
  • The Fourier correspondences (shown in green) illustrate the relationships between these system functions.


Note:

Compare the time-variant transfer function  $|\eta_{\rm FZ}(f, \hspace{0.05cm} t)|$  in the bottom right figure with the corresponding graph in  Exercise 2.4:

  • The respective magnitude functions differ significantly, although  $|\eta_{\rm VZ}(\tau, t)|$  is the same in both cases.
  • In Exercise 2.4, a cosine was implicitly assumed for  $\eta_{\rm VZ}(\tau = 1 \ {\rm µ s}, t)$;  here we have a negative cosine function.
  • The (not explicitly) specified delay–Doppler function for Exercise 2.4 was
$$\eta_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2}} \cdot \delta (\tau) \cdot \delta (f_{\rm D} - 100\,{\rm Hz})+$$
$$\hspace{2cm}+\hspace{0.22cm}\frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} - 50\,{\rm Hz})+ $$
$$\hspace{2cm}+\hspace{0.22cm} \frac{1}{2} \cdot \delta (\tau- 1\,{\rm \mu s}) \cdot \delta (f_{\rm D} + 50\,{\rm Hz}) \hspace{0.05cm}.$$
  • Comparison with the equation in this task shows that only the signs of the Diracs have changed at  $\tau = 1 \ \rm µ s$.