Difference between revisions of "Aufgaben:Exercise 2.2Z: Non-Linearities"

From LNTwww
m (Text replacement - "Category:Exercises for Signal Representation" to "Category:Signal Representation: Exercises")
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID322__Sig_Z_2_2.png|right|frame|Gleichanteil nach Nichtlinearitäten]]
+
[[File:P_ID322__Sig_Z_2_2.png|right|frame|DC component after non-linearities]]
 
We start from the triangular signal  ${x(t)}$  according to the figure above.  
 
We start from the triangular signal  ${x(t)}$  according to the figure above.  
  
 
If we apply this signal to an amplitude limiter, we get the signal
 
If we apply this signal to an amplitude limiter, we get the signal
:$$y(t)=\left\{ {x(t)\atop \rm 1V}{\hspace{0.5cm} {\rm f\ddot{u}r}\quad x(t)\le \rm 1V \atop {\rm sonst}}\right..$$
+
:$$y(t)=\left\{ {x(t)\atop \rm 1V}{\hspace{0.5cm} {\rm for}\quad x(t)\le \rm 1V \atop {\rm else}}\right..$$
 
A second non-linearity provides the signal
 
A second non-linearity provides the signal
 
:$$z(t)=x^2(t).$$
 
:$$z(t)=x^2(t).$$
Line 20: Line 20:
  
 
''Hint:''  
 
''Hint:''  
*This exercise belongs to the chapter  [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|Direct Current Signal - Limit Case of a Periodic Signal.]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|Direct Current Signal - Limit Case of a Periodic Signal]].
 
   
 
   
  

Revision as of 10:18, 26 March 2021

DC component after non-linearities

We start from the triangular signal  ${x(t)}$  according to the figure above.

If we apply this signal to an amplitude limiter, we get the signal

$$y(t)=\left\{ {x(t)\atop \rm 1V}{\hspace{0.5cm} {\rm for}\quad x(t)\le \rm 1V \atop {\rm else}}\right..$$

A second non-linearity provides the signal

$$z(t)=x^2(t).$$

The DC signal components are designated  $x_0$,  $y_0$  and  $z_0$  in the following.





Hint:




Questions

1

Determine the DC signal component  $x_0$  of the signal  ${x(t)}$.

$x_0\ = \ $

  $\text{V}$

2

Determine the DC signal component  $y_0$  of the signal  ${y(t)}$.

$y_0\ = \ $

  $\text{V}$

3

Determine the DC signal component  $z_0$  of the signal  ${z(t)}$.

$z_0\ = \ $

  $\text{V}^2$


Solution

(1)  The DC signal  $x_0$  is the mean value of the signal  ${x(t)}$. Averaging over a period duration  $T_0 = 1 \, \text{ms}$ is sufficient. One obtains:

$$x_0=\frac{1}{T_0}\int^{T_0}_0 x(t)\,{\rm d} t \hspace{0.15cm}\underline{=1\,\rm V}.$$


(2)  In half the time  ${y(t)} = 1\, \text{V}$, in the other half is is between  $0$  and  $1\, \text{V}$  with the mean value at  $0.5 \,\text{V}$  ⇒   $y_0 \hspace{0.15cm}\underline{= 0.75 \,\text{V}}$.


(3)  Due to the periodicity and symmetry, averaging in the range from  $0$  bis  $T_0/2$ is sufficient.

  • With the corresponding characteristic curve, the following then applies::
$$z_0=\frac{1}{T_0/2}\int^{T_0/2}_0 x^2(t)\,{\rm d}t=\frac{4\rm V^2}{T_0/2}\int^{T_0/2}_0 ({2t}/{T_0})^2\, {\rm d}t={4}/{3}\rm \;V^2 \hspace{0.15cm}\underline{\approx1.333\rm \;V^2}.$$