Difference between revisions of "Aufgaben:Exercise 2.2Z: Non-Linearities"

From LNTwww
(No difference)

Revision as of 16:57, 12 April 2021

DC component after non-linearities

We start from the triangular signal  x(t)  according to the figure above.

If we apply this signal to an amplitude limiter, we get the signal

y(t)={x(t)1Vforx(t)1Velse.

A second non-linearity provides the signal

z(t)=x2(t).

The DC signal components are designated  x0y0  and  z0  in the following.





Hint:




Questions

1

Determine the DC signal component  x0  of the signal  x(t).

x0 = 

  V

2

Determine the DC signal component  y0  of the signal  y(t).

y0 = 

  V

3

Determine the DC signal component  z0  of the signal  z(t).

z0 = 

  V2


Solution

(1)  The DC signal  x0  is the mean value of the signal  x(t). Averaging over a period duration  T0=1ms is sufficient. One obtains:

x0=1T0T00x(t)dt=1V_.


(2)  In half the time  y(t)=1V, in the other half is is between  0  and  1V  with the mean value at  0.5V  ⇒   y0=0.75V_.


(3)  Due to the periodicity and symmetry, averaging in the range from  0  bis  T0/2 is sufficient.

  • With the corresponding characteristic curve, the following then applies::
z0=1T0/2T0/20x2(t)dt=4V2T0/2T0/20(2t/T0)2dt=4/3V21.333V2_.