Difference between revisions of "Aufgaben:Exercise 2.4: Rectified Cosine"

From LNTwww
 
(35 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Fourierreihe
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Series
 
}}
 
}}
  
[[File:P_ID300__Sig_A_2_4.png|250px|right|Fourierreihe: Gleichgerichteter Cosinus (Aufgabe A2.4)]]
+
[[File:P_ID300__Sig_A_2_4.png|right|frame|Cosine and rectified cosine]]
  
Ein Cosinussignal $x(t)$ mit der Amplitude 1V und der Frequenz $f_0$ = 10 kHz wird an den Eingang eines Doppelweggleichrichters gelegt. An dessen Ausgang ergibt sich das Signal $y(t)$, das in der Grafik ebenfalls dargestellt ist.
+
A cosine signal  $x(t)$  with amplitude  $1\,\rm{V}$  and frequency  $f_0= 10\,\rm{kHz}$  is applied to the input of a half-wave rectifier.  At its output, the signal  $y(t)$ results, which is shown in the graph below.
Bei den Teilaufgaben 6) und 7) wird auch das Fehlersignal $\epsilon_3(t) = y_3(t) – y(t)$ verwendet. Dieses beschreibt die Differenz zwischen der auf lediglich $N = 3$ Koeffizienten begrenzten Fourierreihe  ⇒  $y_3(t)$ und dem tatsächlichen Ausgangssignal $y(t)$.
 
  
Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 2.4. Eine kompakte Zusammenfassung der Thematik finden Sie im folgenden Lernvideo:
+
In subtasks  '''(6)'''  and  '''(7)'''  the error signal  $\varepsilon_3(t) = y_3(t) - y(t)$  is also used.  This describes the difference between the Fourier series  ⇒   $y_3(t)$   limited to only  $N = 3$  coefficients and the actual output signal  $y(t)$.
Zur Berechnung der Fourierkoeffizienten (Dauer 3:50)
+
 
Zur Lösung der Aufgabe können Sie das folgende bestimmte Integral benutzen ($n$ sei ganzzahlig):
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Series|Fourier Series]].
 +
 +
*To solve the problem, you can use the following definite integral   $($let $n$ be an integer$)$:
 
   
 
   
$$\int ^{\pi /2}_{-\pi /2}\cos(u)\cdot\cos(2nu)\,{\rm d}u  =  (-1)^{n+1}\cdot\frac{2}{4n^2-1}.$$
+
:$$\int ^{\pi /2}_{-\pi /2}\cos(u)\cdot\cos(2nu)\,{\rm d}u  =  (-1)^{n+1}\cdot\frac{2}{4n^2-1}.$$
 +
 
 +
*You can find a compact summary of the topic in the (German language) learning video<br> &nbsp; &nbsp; &nbsp;[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]] &nbsp; &rArr; &nbsp; "To calculate the Fourier coefficients".
 +
 
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der nachfolgenden Aussagen sind für das Signal $x(t)$ zutreffend?
+
{Which of the following statements are true for the signal&nbsp; $x(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Die Periodendauer beträgt 100 Mikrosekunden.
+
+ The period duration is&nbsp;  $T_0 = 100 \,&micro;{\rm s}$.
+ Der Gleichsignalkoeffizient $A_0$ ist 0.
+
+ The DC signal coefficient is&nbsp; $A_0 = 0$.
+ Von allen Cosinuskoeffizienten $A_n$ ist nur einer ungleich 0.
+
+ Of all cosine coefficients&nbsp; $A_n$&nbsp; exactly one is not equal to zero.
- Von allen Sinuskoeffizienten $B_n$ ist nur einer ungleich 0.
+
- Of all the sine coefficients&nbsp; $B_n$&nbsp; exactly one is not equal to zero.
+ Die Fourierreihe weicht nicht vom tatsächlichen Signal $x(t)$ ab.
+
+ The Fourier series&nbsp; $x_3(t)$&nbsp; does not deviate from the actual signal&nbsp; $x(t)$&nbsp;.
  
{Wie groß ist die Periodendauer des Signals $y(t)$?
+
{What is the period duration of the signal&nbsp; $y(t)$?
 
|type="{}"}
 
|type="{}"}
$T_0$ = { 0.05 3% } ms
+
$T_0\ = \ $ { 50 3% } &nbsp; ${\rm &micro;s}$
  
{Berechnen Sie den Gleichsignalanteil des Signals $y(t)$.
+
{Calculate the DC component of the signal&nbsp; $y(t)$.
 
|type="{}"}
 
|type="{}"}
$A_0$ = { 0.637 } V
+
$A_0\ = \ $ { 0.637 3% } &nbsp; ${\rm V}$
  
{Wie lauten die Sinuskoeffizienten $B_n$? Begründen Sie Ihr Ergebnis. Geben Sie zur Kontrolle den Koeffizienten $B_2$ ein.
+
{What are the sine coefficients&nbsp; $B_n$? Justify your result. Enter the coefficient&nbsp; $B_2$&nbsp; as a check.
 
|type="{}"}
 
|type="{}"}
$B_2$ = { 0 } V
+
$B_2\ = \ $ { 0. } &nbsp; ${\rm V}$
  
{Berechnen Sie nun die Cosinuskoeffizienten $A_n$. Geben Sie zur Kontrolle den Koeffizienten $A_2$ ein.
+
 
 +
{Now calculate the cosine coefficient&nbsp; $A_n$. Enter the coefficient&nbsp; $A_2$&nbsp; as a check.
 
|type="{}"}
 
|type="{}"}
$A_2$ = { -0.085 3% } V
+
$A_2\ = \ $ { -0.087--0.083 } &nbsp; ${\rm V}$
 +
 
  
{Geben Sie die Fourierreihe $y_3(t)$ analytisch an (Begrenzung auf je $N = 3$ Sinus– bzw. Cosinuskoeffizienten). Wie groß ist der Fehler zwischen dieser endlichen Fourierreihe und dem tatsächlichen Signalwert bei $t = 0$?
+
{Specify the Fourier series&nbsp; $y_3(t)$&nbsp; analytically&nbsp; $($limit to&nbsp; $N = 3$&nbsp; sine and cosine coefficients each$)$.
 +
<br>How large is the error between this finite Fourier series and the actual signal value at&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
$\epsilon_3(t=0)$ = { 0.0125 3% } V
+
$\varepsilon_3(t= 0)\ = \ $ { 0.0125 3% } ${\rm V}$
  
{Berechnen Sie nun den Fehler ε3(t = 25 µs). Interpretieren Sie diesen Wert im Vergleich zum Ergebnis aus 6).
+
{Now calculate the error&nbsp; $\varepsilon_3(t= 25 \,&micro;{\rm s})$.&nbsp; Interpret this value in comparison to the result from&nbsp; '''(6)'''.
 
|type="{}"}
 
|type="{}"}
$\epsilon_3(t=25\text{\mu s})$ = { 0.091 3% } V
+
$\varepsilon_3(t= 25 \,&micro;{\rm s})\ = \ $ { 0.091 3% } ${\rm V}$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
 
 +
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Aus der Signalfrequenz $f_0$ = 10 kHz folgt $T_0 = 1/f_0 = 100\mu\text{s}$. Das Cosinussignal ist gleichsignalfrei ($A_0 = 0$) und wird durch einen einzigen Cosinuskoeffizienten nämlich $A_1$ – vollständig beschrieben. Alle Sinuskoeffizienten $B_n$ sind identisch 0, da $x(t)$ eine gerade Funktion ist. Die Fourierreihendarstellung bildet $x(t)$ fehlerfrei nach.  
+
'''(1)'''&nbsp; All solutions are correct except the fourth:
Richtig sind somit alle Lösungsvorschläge außer dem Vierten.
+
*From the signal frequency&nbsp; $f_0= 10\,\rm{kHz}$&nbsp; follows&nbsp; $T_0 = 1/f_0 = 100\,&micro;\text{s}$.  
 +
*The cosine signal is mean&ndash;free&nbsp; $(A_0 = 0)$&nbsp; and it is completely described by a single cosine coefficient namely&nbsp; $A_1$&nbsp;.  
 +
*All sine coefficients are&nbsp; $B_n \equiv 0$, since&nbsp; $x(t)$&nbsp; is an even function.  
 +
*The Fourier series representation&nbsp; $x_3(t)$&nbsp; reproduces&nbsp; $x(t)$&nbsp; without error.  
 +
 
 +
 
  
'''2.''' Aufgrund der Doppelweggleichrichtung ergibt sich für die Periodendauer nunmehr der halbe Wert: $T_0 = 50\mu\text{s} = 0.05\text{ms}$. Bei allen nachfolgenden Punkten bezieht sich $T_0$ auf diesen Wert, also auf die Periodendauer des Signals $y(t)$.
+
'''(2)'''&nbsp; Due to the double path rectification, the period duration is now half the value:&nbsp; $T_0 \hspace{0.1cm}\underline{= 50\,&micro;\text{s}}$.  
 +
*For all subsequent points, the specification&nbsp; $T_0$&nbsp; refers to this value, i.e. to the period of the signal&nbsp; $y(t)$.
  
'''3.''' Im Bereich von $–T_0/2$ bis $T_0/2 (–25\mu\text{s} ... 25\mu\text{s})$ ist $y(t) = x(t)$. Mit $f_x$ = 10 kHz = $1/(2T_0)$ gilt deshalb für diesen Abschnitt:
+
 
 +
 
 +
'''(3)'''&nbsp; In the range from&nbsp; $–T_0/2$&nbsp; to&nbsp; $+T_0/2 \ (–25\,&micro;\text{s} \ \text{...}  +25\,&micro;\text{s})$&nbsp; is&nbsp; $y(t) = x(t)$. With&nbsp; $f_x= 10\,\rm{kHz} = 1/(2T_0)$&nbsp; therefore applies to this section:
 
   
 
   
$$y(t)={\rm 1V}\cdot\cos(2{\pi} f_0\hspace{0.05cm}t)={\rm 1V}\cdot\cos(\pi\frac{t}{T_0}).$$
+
:$$y(t)={\rm 1V}\cdot\cos(2{\pi} f_0\hspace{0.05cm}t)={\rm 1V}\cdot\cos(\pi \cdot {t}/{T_0}).$$
  
Daraus ergibt sich für den Gleichsignalanteil:
+
*This results in the following for the DC coefficient:
 
   
 
   
$$A_0=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}y(t)\,{\rm d} t=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}{\rm 1V}\cdot\cos(\pi\frac{t}{T_0})\,{\rm d}t.$$
+
:$$A_0=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}y(t)\,{\rm d} t=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}{\rm 1V}\cdot\cos(\pi\cdot {t}/{T_0})\,{\rm d}t.$$
  
Mit der Substitution $u = \pi \cdot t/T_0$ erhält man
+
*With the substitution&nbsp; $u = \pi \cdot t/T_0$&nbsp; one obtains:
 
   
 
   
$$A_0=\left. \frac{ {\rm 1V}}{\pi}\int_{-\pi /2}^{\pi/2}\cos(u)\,{\rm d}u=\frac{ {\rm 1V}}{\pi}\sin(u)\; \right| _{-\pi/2}^{\pi/2}=\frac{ {\rm 1V}\cdot 2}{\pi} \hspace{0.15cm}\underline{\approx 0.637\;{\rm V}}.$$
+
:$$A_0=\left. \frac{ {\rm 1V}}{\pi}\int_{-\pi /2}^{\pi/2}\cos(u)\,{\rm d}u=\frac{ {\rm 1V}}{\pi}\sin(u)\; \right| _{-\pi/2}^{\pi/2}=\frac{ {\rm 1V}\cdot 2}{\pi} \hspace{0.15cm}\underline{\approx 0.637\;{\rm V}}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; Since&nbsp; $y(–t) = y(t)$&nbsp; holds, all sine coefficients&nbsp; $B_n = 0$.&nbsp; Thus&nbsp; $B_2 \hspace{0.1cm}\underline{= 0}$&nbsp; also holds.
 +
 
  
'''4.''' Da $y(–t) = y(t)$ gilt, sind alle Sinuskoeffizienten $B_n = 0$. Insbesondere ist $B_2 = 0$.
 
  
'''5.''' Für die Koeffizienten $A_n$ gilt mit der Substitution $u = \pi \cdot t/T_0$ entsprechend dem angegebenen Integral:
+
'''(5)'''&nbsp;  For the coefficients&nbsp; $A_n$&nbsp; applies with the substitution&nbsp; $u = \pi \cdot t/T_0$&nbsp; according to the given integral:
 
   
 
   
$$A_n  = \frac{2{\rm V}}{T_0}\int_{-T_0/2}^{T_0/2}\cos(\pi\frac{t}{T_0})\cdot \cos(n\cdot 2\pi\frac{t}{T_0})\,{\rm d}t  = \frac{2{\rm V}}{\pi}\int_{-\pi/2}^{\pi/2}\cos(u)\cdot \cos(2n u)\,{\rm d}u \\
+
:$$A_n  = \frac{2{\rm V}}{T_0}\int_{-T_0/2}^{T_0/2}\cos(\pi\frac{t}{T_0})\cdot \cos(n\cdot 2\pi\frac{t}{T_0})\,{\rm d}t  = \frac{2{\rm V}}{\pi}\int_{-\pi/2}^{\pi/2}\cos(u)\cdot \cos(2n u)\,{\rm d}u \quad
 
\Rightarrow  \quad A_n  = \left( { - 1} \right)^{n + 1} \frac{{4\;{\rm{V}}}}{{{\rm{\pi }}\left( {4n^2  - 1} \right)}}.$$
 
\Rightarrow  \quad A_n  = \left( { - 1} \right)^{n + 1} \frac{{4\;{\rm{V}}}}{{{\rm{\pi }}\left( {4n^2  - 1} \right)}}.$$
  
Der Koeffizient $A_2$ ist damit gleich $–4 \text{V}/(15\pi) \approx –0.085 \text{V}$.
+
The coefficient&nbsp; $A_2$&nbsp; is thus equal to&nbsp; $-4 \,\text{V}/(15\pi) \hspace{0.1cm}\underline{\approx -\hspace{0.05cm}0.085 \, \text{V}}$.
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; For the finite Fourier series with&nbsp; $N = 3$&nbsp; the following applies in general:
 +
 
 +
:$$y_3(t)=\frac{2{\rm V}}{\pi} \cdot \left [ 1+{2}/{3} \cdot \cos(\omega_0t)-{2}/{15}\cdot \cos(2\omega_0t)+{2}/{35}\cdot \cos(3\omega_0t) \right ].$$
 +
 
 +
At time&nbsp; $t = 0$:&nbsp; &nbsp; $y_3(0) \approx 1.0125 \ \rm V$; thus the error is&nbsp; $\varepsilon_3(t = 0) \hspace{0.15cm}\underline{= 0.0125 \,\text{V}}$ .
  
'''6.''' Für die endliche Fourierreihe mit $N = 3$ gilt allgemein:
 
 
$$y_3(t)=\frac{2{\rm V}}{\pi} \cdot \left [ 1+{2}/{3} \cdot \cos(\omega_0t)-{2}/{15}\cdot \cos(2\omega_0t)+{2}/{35}\cdot \cos(3\omega_0t) \right ].$$
 
  
Zum Zeitpunkt $t = 0$ ist $y_3(0) \approx$ 1.0125 V; damit ergibt sich der Fehler zu $\epsilon_3(t = 0) =$ 0.0125 V.
 
  
'''7.''' Die Zeit $t = 25\text{\mu s}$ entspricht der halben Periodendauer. Hierfür gilt wegen $\omega_0 \cdot T_0 = 2\pi$:
+
'''(7)'''&nbsp; The time&nbsp; $t = 25\,&micro;\text{s}$&nbsp;  corresponds to half the period of the signal&nbsp; $y(t)$.&nbsp; The following applies here because of&nbsp; $\omega_0 \cdot T_0 = 2\pi$:
 
   
 
   
$$\begin{align*} y_3(T_0/2) & = \frac{2{\rm V}}{\pi} \left [1+\frac{2}{3} \cdot \cos({\pi}) -\frac{2}{15}\cdot \cos(2\pi)+\frac{2}{35}\cdot \cos(3\pi)\right ] \\ &  =  \frac{2{\rm V}}{\pi}\left [1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}\right ]   =  \frac{2{\rm V}}{7\pi}\approx 0.091{\rm V}\end{align*} . $$
+
:$$y_3(T_0/2) = \frac{2{\rm V}}{\pi} \left [1+\frac{2}{3} \cdot \cos({\pi}) -\frac{2}{15}\cdot \cos(2\pi)+\frac{2}{35}\cdot \cos(3\pi)\right ]=  \frac{2{\rm V}}{\pi}\left [1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}\right ] =  \frac{2{\rm V}}{7\pi}\approx 0.091{\rm V}.$$
  
Da $y(T_0/2) = 0$ ist, ergibt sich für $\epsilon_3(T_0/2)$ ebenfalls 0.091 V. Dieser Fehler ist um mehr als den Faktor 7 größer als der Fehler bei $t = 0$, da das Signal $y(t)$ bei $t = T_0/2$ mehr hochfrequente Anteile besitzt (spitzförmiger Verlauf). Wird gefordert, dass der Fehler $\epsilon_3(T_0/2)$ kleiner als 0.01 sein soll, dann müssten mindestens 32 Fourierkoeffizienten berücksichtigt werden.
+
*Since&nbsp; $y(T_0/2) = 0$&nbsp; this also results in&nbsp; $\varepsilon_3(T_0/2) \hspace{0.15cm}\underline{\approx 0.091\,{\rm V}}$.  
 +
*This error is larger than the error at&nbsp; $t = 0$  by more than a factor of &nbsp;$7$, since&nbsp; $y(t)$&nbsp; has more high-frequency components at&nbsp; $t = T_0/2$&nbsp; $($peak-shaped course$)$.  
 +
*If it is required that the error&nbsp; $\varepsilon_3(T_0/2)$&nbsp; be smaller than&nbsp; $0.01$&nbsp; then at least&nbsp; $32$&nbsp; Fourier coefficients would have to be taken into account.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^2. Periodische Signale^]]
+
[[Category:Signal Representation: Exercises|^2.4 Fourier Series^]]

Latest revision as of 13:24, 15 April 2021

Cosine and rectified cosine

A cosine signal  $x(t)$  with amplitude  $1\,\rm{V}$  and frequency  $f_0= 10\,\rm{kHz}$  is applied to the input of a half-wave rectifier.  At its output, the signal  $y(t)$ results, which is shown in the graph below.

In subtasks  (6)  and  (7)  the error signal  $\varepsilon_3(t) = y_3(t) - y(t)$  is also used.  This describes the difference between the Fourier series  ⇒   $y_3(t)$   limited to only  $N = 3$  coefficients and the actual output signal  $y(t)$.




Hints:

  • To solve the problem, you can use the following definite integral   $($let $n$ be an integer$)$:
$$\int ^{\pi /2}_{-\pi /2}\cos(u)\cdot\cos(2nu)\,{\rm d}u = (-1)^{n+1}\cdot\frac{2}{4n^2-1}.$$



Questions

1

Which of the following statements are true for the signal  $x(t)$ ?

The period duration is  $T_0 = 100 \,µ{\rm s}$.
The DC signal coefficient is  $A_0 = 0$.
Of all cosine coefficients  $A_n$  exactly one is not equal to zero.
Of all the sine coefficients  $B_n$  exactly one is not equal to zero.
The Fourier series  $x_3(t)$  does not deviate from the actual signal  $x(t)$ .

2

What is the period duration of the signal  $y(t)$?

$T_0\ = \ $

  ${\rm µs}$

3

Calculate the DC component of the signal  $y(t)$.

$A_0\ = \ $

  ${\rm V}$

4

What are the sine coefficients  $B_n$? Justify your result. Enter the coefficient  $B_2$  as a check.

$B_2\ = \ $

  ${\rm V}$

5

Now calculate the cosine coefficient  $A_n$. Enter the coefficient  $A_2$  as a check.

$A_2\ = \ $

  ${\rm V}$

6

Specify the Fourier series  $y_3(t)$  analytically  $($limit to  $N = 3$  sine and cosine coefficients each$)$.
How large is the error between this finite Fourier series and the actual signal value at  $t = 0$?

$\varepsilon_3(t= 0)\ = \ $

${\rm V}$

7

Now calculate the error  $\varepsilon_3(t= 25 \,µ{\rm s})$.  Interpret this value in comparison to the result from  (6).

$\varepsilon_3(t= 25 \,µ{\rm s})\ = \ $

${\rm V}$


Solution

(1)  All solutions are correct except the fourth:

  • From the signal frequency  $f_0= 10\,\rm{kHz}$  follows  $T_0 = 1/f_0 = 100\,µ\text{s}$.
  • The cosine signal is mean–free  $(A_0 = 0)$  and it is completely described by a single cosine coefficient – namely  $A_1$ .
  • All sine coefficients are  $B_n \equiv 0$, since  $x(t)$  is an even function.
  • The Fourier series representation  $x_3(t)$  reproduces  $x(t)$  without error.


(2)  Due to the double path rectification, the period duration is now half the value:  $T_0 \hspace{0.1cm}\underline{= 50\,µ\text{s}}$.

  • For all subsequent points, the specification  $T_0$  refers to this value, i.e. to the period of the signal  $y(t)$.


(3)  In the range from  $–T_0/2$  to  $+T_0/2 \ (–25\,µ\text{s} \ \text{...} +25\,µ\text{s})$  is  $y(t) = x(t)$. With  $f_x= 10\,\rm{kHz} = 1/(2T_0)$  therefore applies to this section:

$$y(t)={\rm 1V}\cdot\cos(2{\pi} f_0\hspace{0.05cm}t)={\rm 1V}\cdot\cos(\pi \cdot {t}/{T_0}).$$
  • This results in the following for the DC coefficient:
$$A_0=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}y(t)\,{\rm d} t=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}{\rm 1V}\cdot\cos(\pi\cdot {t}/{T_0})\,{\rm d}t.$$
  • With the substitution  $u = \pi \cdot t/T_0$  one obtains:
$$A_0=\left. \frac{ {\rm 1V}}{\pi}\int_{-\pi /2}^{\pi/2}\cos(u)\,{\rm d}u=\frac{ {\rm 1V}}{\pi}\sin(u)\; \right| _{-\pi/2}^{\pi/2}=\frac{ {\rm 1V}\cdot 2}{\pi} \hspace{0.15cm}\underline{\approx 0.637\;{\rm V}}.$$


(4)  Since  $y(–t) = y(t)$  holds, all sine coefficients  $B_n = 0$.  Thus  $B_2 \hspace{0.1cm}\underline{= 0}$  also holds.


(5)  For the coefficients  $A_n$  applies with the substitution  $u = \pi \cdot t/T_0$  according to the given integral:

$$A_n = \frac{2{\rm V}}{T_0}\int_{-T_0/2}^{T_0/2}\cos(\pi\frac{t}{T_0})\cdot \cos(n\cdot 2\pi\frac{t}{T_0})\,{\rm d}t = \frac{2{\rm V}}{\pi}\int_{-\pi/2}^{\pi/2}\cos(u)\cdot \cos(2n u)\,{\rm d}u \quad \Rightarrow \quad A_n = \left( { - 1} \right)^{n + 1} \frac{{4\;{\rm{V}}}}{{{\rm{\pi }}\left( {4n^2 - 1} \right)}}.$$

The coefficient  $A_2$  is thus equal to  $-4 \,\text{V}/(15\pi) \hspace{0.1cm}\underline{\approx -\hspace{0.05cm}0.085 \, \text{V}}$.


(6)  For the finite Fourier series with  $N = 3$  the following applies in general:

$$y_3(t)=\frac{2{\rm V}}{\pi} \cdot \left [ 1+{2}/{3} \cdot \cos(\omega_0t)-{2}/{15}\cdot \cos(2\omega_0t)+{2}/{35}\cdot \cos(3\omega_0t) \right ].$$

At time  $t = 0$:    $y_3(0) \approx 1.0125 \ \rm V$; thus the error is  $\varepsilon_3(t = 0) \hspace{0.15cm}\underline{= 0.0125 \,\text{V}}$ .


(7)  The time  $t = 25\,µ\text{s}$  corresponds to half the period of the signal  $y(t)$.  The following applies here because of  $\omega_0 \cdot T_0 = 2\pi$:

$$y_3(T_0/2) = \frac{2{\rm V}}{\pi} \left [1+\frac{2}{3} \cdot \cos({\pi}) -\frac{2}{15}\cdot \cos(2\pi)+\frac{2}{35}\cdot \cos(3\pi)\right ]= \frac{2{\rm V}}{\pi}\left [1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}\right ] = \frac{2{\rm V}}{7\pi}\approx 0.091{\rm V}.$$
  • Since  $y(T_0/2) = 0$  this also results in  $\varepsilon_3(T_0/2) \hspace{0.15cm}\underline{\approx 0.091\,{\rm V}}$.
  • This error is larger than the error at  $t = 0$ by more than a factor of  $7$, since  $y(t)$  has more high-frequency components at  $t = T_0/2$  $($peak-shaped course$)$.
  • If it is required that the error  $\varepsilon_3(T_0/2)$  be smaller than  $0.01$  then at least  $32$  Fourier coefficients would have to be taken into account.