Difference between revisions of "Aufgaben:Exercise 2.4Z: Triangular Function"
From LNTwww
m (Text replacement - "Signal_Representation/Fourierreihe" to "Signal_Representation/Fourier_Series") |
|||
(11 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Signal_Representation/Fourier_Series |
}} | }} | ||
− | [[File:P_ID317__Sig_Z_2_4.png|right|frame| | + | [[File:P_ID317__Sig_Z_2_4.png|right|frame|Preset triangular signal]] |
− | + | We consider the signal ${x(t)}$ with $T_0$ according to the adjacent sketch, where the second signal parameter $T_1 ≤ T_0/2$ is to apply. This signal is dimensionless and limited to $1$ . | |
− | In | + | In subtask '''(3)''' the Fourier series representation $x_3(t)$ based on only $N = 3$ coefficients is used. |
− | + | The difference between the truncated Fourier series and the actual signal is: | |
:$$\varepsilon_3(t)=x_3(t)-x(t).$$ | :$$\varepsilon_3(t)=x_3(t)-x(t).$$ | ||
Line 17: | Line 17: | ||
− | '' | + | ''Hints:'' |
− | * | + | *This exercise belongs to the chapter [[Signal_Representation/Fourier_Series|Fourier Series]]. |
− | * | + | *You can find a compact summary of the topic in the two (German language) learning videos |
− | ::[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]] | + | ::[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]] ⇒ "To calculate the Fourier coefficients" |
− | :: [[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]] | + | :: [[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]] ⇒ "Properties of the Fourier series representation" |
− | * | + | *To solve the problem, you can use the following definite integral (let $n$ be an integer$)$: |
:$$\int u \cdot \cos(au)\,{\rm d}u = \frac{\cos(au)}{a^2} + \frac{u \cdot \sin(au)}{a}.$$ | :$$\int u \cdot \cos(au)\,{\rm d}u = \frac{\cos(au)}{a^2} + \frac{u \cdot \sin(au)}{a}.$$ | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which of the following statements are true for all permissible $T_0$ and $T_1$ ? |
|type="[]"} | |type="[]"} | ||
− | + | + | + The DC coefficient is $A_0 = T_1/T_0$. |
− | + | + | + All sine coefficients $B_n$ are zero. |
− | - | + | - All cosine coefficients $A_n$ with even $n$ are zero. |
− | { | + | {Calculate the Fourier coefficients $A_n$ in general form. What are the values for $A_1$, $A_2$ and $A_3$ with $T_1/T_0 = 0.25$? |
|type="{}"} | |type="{}"} | ||
$A_1\ = \ $ { 0.405 3% } | $A_1\ = \ $ { 0.405 3% } | ||
Line 45: | Line 45: | ||
− | { | + | {Write the function ${x(t)}$ as a Fourier series and break it off after $N = 3$ coefficients. How large is the error $\varepsilon_3(t = 0)$? |
|type="{}"} | |type="{}"} | ||
$\varepsilon_3(t = 0)\ = \ $ { -0.11--0.09 } | $\varepsilon_3(t = 0)\ = \ $ { -0.11--0.09 } | ||
Line 53: | Line 53: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Proposed <u>solutions 1 and 2</u> are correct: |
− | * | + | *The DC coefficient is actually $T_1/T_0$. Since ${x(t)}$ is an even function, all sine coefficients $B_n = 0$. |
− | * | + | *The even cosine coefficients $A_{2n}$ only disappear if $T_1 = T_0/2$. |
− | *In | + | *In this case the condition ${x(t)} = 2A_0 - x(t - T_0/2)$ is fulfilled $($with $A_0 = 0.5)$. |
− | '''(2)''' | + | '''(2)''' Taking advantage of the symmetry property ${x(-t)} = {x(t)}$ one obtains: |
:$$A_n=2 \cdot \frac{2}{T_0}\cdot \hspace{-0.1cm}\int_0^{T_1}(1-\frac{t}{T_1})\cos(2\pi n\frac{t}{T_0})\, {\rm d}t.$$ | :$$A_n=2 \cdot \frac{2}{T_0}\cdot \hspace{-0.1cm}\int_0^{T_1}(1-\frac{t}{T_1})\cos(2\pi n\frac{t}{T_0})\, {\rm d}t.$$ | ||
− | * | + | *This leads to two partial integrals $I_1$ and $I_2$. The first is: |
:$$I_1=\frac{4}{T_0} \cdot \hspace{-0.1cm} \int_0^{T_1}\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{2}{\pi n}\sin(2\pi n\frac{T_1}{T_0}).$$ | :$$I_1=\frac{4}{T_0} \cdot \hspace{-0.1cm} \int_0^{T_1}\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{2}{\pi n}\sin(2\pi n\frac{T_1}{T_0}).$$ | ||
− | * | + | *For the second integral, with the integral on the statement side: |
:$$I_2=\frac{-4}{T_0\cdot T_1}\cdot \hspace{-0.1cm}\int_0^{T_1}t\cdot\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{-4}{T_0\cdot T_1}\cdot \hspace{0.1cm}\left[\frac{T^2_0 \cdot \cos(2\pi nt/T_0)}{4\pi^2n^2}+\frac{T_0 \cdot t \cdot \sin(2\pi nt/T_0)}{2\pi n}\right]^{T_1}_0.$$ | :$$I_2=\frac{-4}{T_0\cdot T_1}\cdot \hspace{-0.1cm}\int_0^{T_1}t\cdot\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{-4}{T_0\cdot T_1}\cdot \hspace{0.1cm}\left[\frac{T^2_0 \cdot \cos(2\pi nt/T_0)}{4\pi^2n^2}+\frac{T_0 \cdot t \cdot \sin(2\pi nt/T_0)}{2\pi n}\right]^{T_1}_0.$$ | ||
− | * | + | *This last integral can be summarised as follows: |
:$$I_2=\frac{-\cos(2\pi nT_1/T_0)}{\pi^2 n^2T_1/T_0}+\frac{1}{\pi^2 n^2 T_1/T_0}-I_1.$$ | :$$I_2=\frac{-\cos(2\pi nT_1/T_0)}{\pi^2 n^2T_1/T_0}+\frac{1}{\pi^2 n^2 T_1/T_0}-I_1.$$ | ||
− | * | + | *From this follows with $1 - \cos(2\alpha) = 2 \cdot \sin^2(\alpha)$: |
:$$A_n=I_1+I_2=\frac{1-\cos(2\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}=\frac{2\sin^2 (\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}.$$ | :$$A_n=I_1+I_2=\frac{1-\cos(2\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}=\frac{2\sin^2 (\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}.$$ | ||
− | * | + | *For $T_1/T_0 = 0.25$ one obtains: |
:$$A_n=\frac{8\sin^2 (\pi n/4)}{\pi^2 n^2}.$$ | :$$A_n=\frac{8\sin^2 (\pi n/4)}{\pi^2 n^2}.$$ | ||
− | * | + | *In particular: |
:$$A_1=\frac{8}{\pi^2}\sin^2(\pi/4)=\frac{4}{\pi^2}\hspace{0.15cm}\underline{\approx 0.405},\hspace{0.5cm} | :$$A_1=\frac{8}{\pi^2}\sin^2(\pi/4)=\frac{4}{\pi^2}\hspace{0.15cm}\underline{\approx 0.405},\hspace{0.5cm} | ||
A_2=\frac{2}{\pi^2}\sin^2(\pi/2)=\frac{2}{\pi^2}\hspace{0.15cm}\underline{\approx 0.202},\hspace{0.5cm} | A_2=\frac{2}{\pi^2}\sin^2(\pi/2)=\frac{2}{\pi^2}\hspace{0.15cm}\underline{\approx 0.202},\hspace{0.5cm} | ||
Line 80: | Line 80: | ||
− | '''(3)''' | + | '''(3)''' It holds: |
:$$x_3(t)=\frac{1}{4}+\frac{4}{\pi^2}\left[\cos(\omega_0 t)+\frac{1}{2}\cos(2\omega_0 t)+\frac{1}{9}\cos(3\omega_0 t)\right].$$ | :$$x_3(t)=\frac{1}{4}+\frac{4}{\pi^2}\left[\cos(\omega_0 t)+\frac{1}{2}\cos(2\omega_0 t)+\frac{1}{9}\cos(3\omega_0 t)\right].$$ | ||
− | * | + | *At time $t = 0$ this gives: |
:$$x_3(t=0)=\frac{1}{4}+\frac{4}{\pi^2}\cdot \frac{29}{18}\approx 0.9 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\varepsilon_3(t=0)=x_3(t=0)-x(t=0)\hspace{0.15cm}\underline{=-0.1}.$$ | :$$x_3(t=0)=\frac{1}{4}+\frac{4}{\pi^2}\cdot \frac{29}{18}\approx 0.9 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\varepsilon_3(t=0)=x_3(t=0)-x(t=0)\hspace{0.15cm}\underline{=-0.1}.$$ | ||
− | * | + | * For the time $t = 0$ and for multiples of the period $T_0$ $($peak of the triangular functions in each case$)$ the deviation is greatest in terms of magnitude. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Signal Representation: Exercises|^2.4 Fourier Series^]] |
Latest revision as of 13:48, 15 April 2021
We consider the signal ${x(t)}$ with $T_0$ according to the adjacent sketch, where the second signal parameter $T_1 ≤ T_0/2$ is to apply. This signal is dimensionless and limited to $1$ .
In subtask (3) the Fourier series representation $x_3(t)$ based on only $N = 3$ coefficients is used.
The difference between the truncated Fourier series and the actual signal is:
- $$\varepsilon_3(t)=x_3(t)-x(t).$$
Hints:
- This exercise belongs to the chapter Fourier Series.
- You can find a compact summary of the topic in the two (German language) learning videos
- Zur Berechnung der Fourierkoeffizienten ⇒ "To calculate the Fourier coefficients"
- Eigenschaften der Fourierreihendarstellung ⇒ "Properties of the Fourier series representation"
- To solve the problem, you can use the following definite integral (let $n$ be an integer$)$:
- $$\int u \cdot \cos(au)\,{\rm d}u = \frac{\cos(au)}{a^2} + \frac{u \cdot \sin(au)}{a}.$$
Questions
Solution
(1) Proposed solutions 1 and 2 are correct:
- The DC coefficient is actually $T_1/T_0$. Since ${x(t)}$ is an even function, all sine coefficients $B_n = 0$.
- The even cosine coefficients $A_{2n}$ only disappear if $T_1 = T_0/2$.
- In this case the condition ${x(t)} = 2A_0 - x(t - T_0/2)$ is fulfilled $($with $A_0 = 0.5)$.
(2) Taking advantage of the symmetry property ${x(-t)} = {x(t)}$ one obtains:
- $$A_n=2 \cdot \frac{2}{T_0}\cdot \hspace{-0.1cm}\int_0^{T_1}(1-\frac{t}{T_1})\cos(2\pi n\frac{t}{T_0})\, {\rm d}t.$$
- This leads to two partial integrals $I_1$ and $I_2$. The first is:
- $$I_1=\frac{4}{T_0} \cdot \hspace{-0.1cm} \int_0^{T_1}\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{2}{\pi n}\sin(2\pi n\frac{T_1}{T_0}).$$
- For the second integral, with the integral on the statement side:
- $$I_2=\frac{-4}{T_0\cdot T_1}\cdot \hspace{-0.1cm}\int_0^{T_1}t\cdot\cos(2\pi n\frac{t}{T_0})\,{\rm d}t=\frac{-4}{T_0\cdot T_1}\cdot \hspace{0.1cm}\left[\frac{T^2_0 \cdot \cos(2\pi nt/T_0)}{4\pi^2n^2}+\frac{T_0 \cdot t \cdot \sin(2\pi nt/T_0)}{2\pi n}\right]^{T_1}_0.$$
- This last integral can be summarised as follows:
- $$I_2=\frac{-\cos(2\pi nT_1/T_0)}{\pi^2 n^2T_1/T_0}+\frac{1}{\pi^2 n^2 T_1/T_0}-I_1.$$
- From this follows with $1 - \cos(2\alpha) = 2 \cdot \sin^2(\alpha)$:
- $$A_n=I_1+I_2=\frac{1-\cos(2\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}=\frac{2\sin^2 (\pi nT_1/T_0)}{\pi^2 n^2 T_1/T_0}.$$
- For $T_1/T_0 = 0.25$ one obtains:
- $$A_n=\frac{8\sin^2 (\pi n/4)}{\pi^2 n^2}.$$
- In particular:
- $$A_1=\frac{8}{\pi^2}\sin^2(\pi/4)=\frac{4}{\pi^2}\hspace{0.15cm}\underline{\approx 0.405},\hspace{0.5cm} A_2=\frac{2}{\pi^2}\sin^2(\pi/2)=\frac{2}{\pi^2}\hspace{0.15cm}\underline{\approx 0.202},\hspace{0.5cm} A_3=\frac{8}{9\pi^2}\sin^2(3\pi/4)=\frac{4}{9\pi^2}\hspace{0.15cm}\underline{\approx 0.045}.$$
(3) It holds:
- $$x_3(t)=\frac{1}{4}+\frac{4}{\pi^2}\left[\cos(\omega_0 t)+\frac{1}{2}\cos(2\omega_0 t)+\frac{1}{9}\cos(3\omega_0 t)\right].$$
- At time $t = 0$ this gives:
- $$x_3(t=0)=\frac{1}{4}+\frac{4}{\pi^2}\cdot \frac{29}{18}\approx 0.9 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\varepsilon_3(t=0)=x_3(t=0)-x(t=0)\hspace{0.15cm}\underline{=-0.1}.$$
- For the time $t = 0$ and for multiples of the period $T_0$ $($peak of the triangular functions in each case$)$ the deviation is greatest in terms of magnitude.