Difference between revisions of "Aufgaben:Exercise 2.6: Complex Fourier Series"

From LNTwww
 
(13 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Fourierreihe
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Series
 
}}
 
}}
  
[[File:P_ID312__Sig_A_2_6.png|right|frame|Verschiedene periodische Dreiecksignale]]
+
[[File:P_ID312__Sig_A_2_6.png|right|frame|Various periodic triangular signals]]
  
Wir betrachten das Signal  $x(t)$, das durch die beiden Parameter  $T_0$  und  $T_1$  festgelegt ist, wobei stets  $T_1 \leq T_0$  gelten soll. Für die komplexen Fourierkoeffizienten
+
We consider the signal  $x(t)$,  defined by the two parameters  $T_0$  and  $T_1$  where  $T_1 \leq T_0$  should always apply.  For the complex Fourier coefficients
 
   
 
   
 
:$$D_n=\frac{1}{T_0} \cdot \int_0^{T_0}x(t)\cdot\rm e^{-\rm j\it n\omega_0t}\,{\rm d} \it t$$
 
:$$D_n=\frac{1}{T_0} \cdot \int_0^{T_0}x(t)\cdot\rm e^{-\rm j\it n\omega_0t}\,{\rm d} \it t$$
  
dieses Signals erhält man nach mathematischen Umformungen:
+
of this signal are obtained after mathematical transformations:
 
   
 
   
:$$D_n=\frac{T_0/T_1} {(2\pi n)^2} \cdot  \bigg(1-{\rm e}^{-{\rm j} 2\pi nT_1/T_0}\bigg)-\frac{\rm j}{2\pi n}.$$
+
:$$D_n=\frac{T_0/T_1} {(2\pi n)^2} \cdot  \big(1-{\rm e}^{-{\rm j} 2\pi nT_1/T_0}\big)-\frac{\rm j}{2\pi n}.$$
  
*Der in den Teilaufgaben  '''(1)'''  und  '''(3)'''  behandelte Parametersatz  $($mit $T_1 = T_0/2)$  ist als das Signal  $x(t)$  dargestellt.  
+
*The parameter set dealt with in subtasks  '''(1)'''  and  '''(3)'''    $($with $T_1 = T_0/2)$  is represented as the signal  $x(t)$ .  
*Für  $T_1 = T_0$  ⇒   Teilaufgabe  '''(2)'''  ergibt sich die Funktion  $y(t)$.  
+
*For  $T_1 = T_0$  ⇒   subtask  '''(2)'''  the function  $y(t)$ results.  
*In der Teilaufgabe  '''(4)'''  wird das Signal  $z(t)$  betrachtet. Dessen Fourierkoeffizienten lauten:
+
*In subtask  '''(4)'''  the signal  $z(t)$  is considered.  Its Fourier coefficients are:
 
   
 
   
 
:$$A_0=1/4,\hspace{1cm}
 
:$$A_0=1/4,\hspace{1cm}
A_n=\left\{ \begin{array}{cl} {\frac{\displaystyle-2}{\displaystyle(\pi  n)^2}} & {\rm  f\ddot{u}r\; geradzahliges\; \it n \rm ,} \\ 0 &  {\rm f\ddot{u}r\; ungeradzahliges\; \it n,} \end{array}\right. $$
+
A_n=\left\{ \begin{array}{cl} {\frac{\displaystyle-2}{\displaystyle(\pi  n)^2}} & {\rm  for\; even\; \it n \rm ,} \\ 0 &  {\rm for\; odd\; \it n,} \end{array}\right. $$
  
 
:$$B_n=0\; \;\;          \rm{ f\ddot{u}r\; alle\; \it n.}$$
 
:$$B_n=0\; \;\;          \rm{ f\ddot{u}r\; alle\; \it n.}$$
Line 27: Line 27:
  
  
''Hinweis:''  
+
''Hints:''  
*Die Aufgabe bezieht sich auf die Seite  [[Signaldarstellung/Fourierreihe#Komplexe_Fourierreihe|Komplexe Fourierreihe]].
+
*This exercise refers to the page  [[Signal_Representation/Fourier_Series#Complex_Fourier_series|Complex Fourier series]].
 
   
 
   
  
Line 35: Line 35:
  
 
   
 
   
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie den Koeffizienten&nbsp; $D_0$&nbsp; und zeigen Sie, dass dieser stets reell ist. Welcher Wert ergibt sich für&nbsp; $T_1 = T_0/2$, also für das Signal&nbsp; $x(t)$?
+
{Calculate the coefficient&nbsp; $D_0$&nbsp; and show that it is always real.&nbsp; What value results for&nbsp; $T_1 = T_0/2$, i.e. for the signal&nbsp; $x(t)$?
 
|type="{}"}
 
|type="{}"}
 
$D_0^{(x)}\ = \ $  { 0.25 3% }
 
$D_0^{(x)}\ = \ $  { 0.25 3% }
  
{Berechnen Sie für den Sonderfall&nbsp; $T_1 = T_0$&nbsp; entsprechend dem Signal&nbsp; $y(t)$&nbsp; die komplexen Fourierkoeffizienten&nbsp; $D_n^{(y)}$&nbsp; für&nbsp; $n \neq 0$. <br>Wie lauten die Koeffizienten&nbsp; $A_n^{(y)}$&nbsp; und&nbsp; $B_n^{(y)}$, insbesondere für&nbsp; $n = 1$?
+
{Calculate the complex Fourier coefficients&nbsp; $D_n^{(y)}$&nbsp; for&nbsp; $n \neq 0$&nbsp; for the special case &nbsp; $T_1 = T_0$&nbsp; corresponding to the signal&nbsp; $y(t)$&nbsp;. <br>What are the coefficients&nbsp; $A_n^{(y)}$&nbsp; and&nbsp; $B_n^{(y)}$,&nbsp; especially for&nbsp; $n = 1$?
 
|type="{}"}
 
|type="{}"}
 
$A_1^{(y)}\ = \ $ { 0. }
 
$A_1^{(y)}\ = \ $ { 0. }
 
$B_1^{(y)}\ = \ $ { 0.318 3% }
 
$B_1^{(y)}\ = \ $ { 0.318 3% }
  
{Berechnen Sie nun für das Signal&nbsp; $x(t)$&nbsp; mit&nbsp; $T_1 = T_0/2$&nbsp; die Koeffizienten&nbsp; $A_n^{(x)}$&nbsp; und&nbsp; $B_n^{(x)}$&nbsp; für&nbsp; $n \neq 0$. Welche Werte ergeben sich für&nbsp; $A_1^{(x)}$&nbsp; und&nbsp; $B_1^{(x)}$?
+
{Now calculate the coefficients&nbsp; $A_n^{(x)}$&nbsp; and&nbsp; $B_n^{(x)}$&nbsp; for the signal&nbsp; $x(t)$&nbsp; with&nbsp; $T_1 = T_0/2$&nbsp; for&nbsp; $n \neq 0$.&nbsp; What are the values for&nbsp; $A_1^{(x)}$&nbsp; and&nbsp; $B_1^{(x)}$?
 
|type="{}"}
 
|type="{}"}
 
$A_1^{(x)}\ = \ $ { 0.203 3% }
 
$A_1^{(x)}\ = \ $ { 0.203 3% }
 
$B_1^{(x)}\ = \ $ { 0.318 3% }
 
$B_1^{(x)}\ = \ $ { 0.318 3% }
  
{Welche der folgenden Aussagen treffen bezüglich&nbsp; $x(t)$,&nbsp; $y(t)$&nbsp; und&nbsp; $z(t)$&nbsp; zu?
+
{Which of the following statements are true regarding&nbsp; $x(t)$,&nbsp; $y(t)$&nbsp; and&nbsp; $z(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Es gilt&nbsp; $x(t) = y(t) + z(t)$.
+
- It is true that&nbsp; $x(t) = y(t) + z(t)$.
+ Es gilt&nbsp; $x(t) = y(t) - z(t)$.
+
+ It is true that&nbsp; $x(t) = y(t) - z(t)$.
- Die Cosinuskoeffizienten&nbsp; $A_n$&nbsp; von&nbsp; $x(t)$&nbsp; und&nbsp; $z(t)$&nbsp; sind identisch.
+
- The cosine coefficients&nbsp; $A_n$&nbsp; of&nbsp; $x(t)$&nbsp; und&nbsp; $z(t)$&nbsp; are identical.
+ Die Cosinuskoeffizienten&nbsp; $A_n$&nbsp; von&nbsp; $x(t)$&nbsp; und&nbsp; $z(t)$&nbsp; sind betragsgleich.
+
+ The cosine coefficients&nbsp; $A_n$&nbsp; of&nbsp; $x(t)$&nbsp; und&nbsp; $z(t)$&nbsp; are equal in magnitude.
+ Die Sinuskoeffizienten&nbsp; $B_n$&nbsp; von&nbsp; $y(t)$&nbsp; und&nbsp; $z(t)$&nbsp; sind identisch.
+
+ The sine coefficients&nbsp; $B_n$&nbsp; of&nbsp; $y(t)$&nbsp; und&nbsp; $z(t)$&nbsp; are identical.
  
  
Line 65: Line 65:
  
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit dem Eulerschen Satz ist der komplexe Fourierkoeffizient&nbsp; $D_n$&nbsp; wie folgt darstellbar:
+
'''(1)'''&nbsp; With Euler's theorem, the complex Fourier coefficient&nbsp; $D_n$ can be represented as follows:
  
 
:$${\rm Re} [D_n] =\frac{T_0/T_1}{(2\pi n)^2}\cdot(1-\cos(2\pi nT_1/T_0)),$$
 
:$${\rm Re} [D_n] =\frac{T_0/T_1}{(2\pi n)^2}\cdot(1-\cos(2\pi nT_1/T_0)),$$
Line 73: Line 73:
 
:$${\rm Im}[D_n] =\frac{T_0/T_1}{(2\pi n)^2} \cdot \sin(2\pi nT_1/T_0)-\frac{1}{2\pi n}.$$
 
:$${\rm Im}[D_n] =\frac{T_0/T_1}{(2\pi n)^2} \cdot \sin(2\pi nT_1/T_0)-\frac{1}{2\pi n}.$$
 
   
 
   
*Mit der für kleine&nbsp; $\alpha$-Werte gültigen Näherung&nbsp; $\text{sin}(\alpha ) \approx \alpha$&nbsp; erhält man für den Imaginärteil:
+
*With the approximation&nbsp; $\text{sin}(\alpha ) \approx \alpha$&nbsp; valid for small&nbsp; $\alpha$&ndash;values one obtains for the imaginary part:
 
 
 
:$${\rm Im}[D_n] =\frac{T_0/T_1}{(2\pi n)^2}\cdot(2\pi nT_1/T_0)-\frac{1}{2\pi n}=0.$$
 
:$${\rm Im}[D_n] =\frac{T_0/T_1}{(2\pi n)^2}\cdot(2\pi nT_1/T_0)-\frac{1}{2\pi n}=0.$$
 
   
 
   
*Für den Realteil erhält man mit&nbsp; $\text{cos}(\alpha) \approx 1 – \alpha^{2}/2$:
+
*For the real part one obtains with&nbsp; $\text{cos}(\alpha) \approx 1 – \alpha^{2}/2$:
  
 
:$${\rm Re}[D_n] =\frac{T_0/T_1}{(2\pi n)^2}\frac{(2\pi nT_1/T_0)^2}{2}=\frac{T_1/T_0}{2}.$$
 
:$${\rm Re}[D_n] =\frac{T_0/T_1}{(2\pi n)^2}\frac{(2\pi nT_1/T_0)^2}{2}=\frac{T_1/T_0}{2}.$$
 
   
 
   
*Für&nbsp; $T_1 = T_0/2$&nbsp; folgt daraus der Gleichsignalkoeffizient&nbsp; $D_0^{(x)} \hspace{0.1cm}\underline{= 0.25}$.  
+
*For&nbsp; $T_1 = T_0/2$&nbsp; it follows that the DC signal coefficient&nbsp; $D_0^{(x)} \hspace{0.1cm}\underline{= 0.25}$.  
*Mit&nbsp; $T_1 = T_0$&nbsp; ergibt sich&nbsp; $D_0^{(y)} = 0.5$.  
+
*With&nbsp; $T_1 = T_0$&nbsp; it results in&nbsp; $D_0^{(y)} = 0.5$.  
*Ein Vergleich mit den Signalen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; auf der Angabenseite zeigen die Richtigkeit dieser Ergebnisse.
+
*A comparison with the signals &nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp;on the data page show the correctness of these results.
  
  
  
'''(2)'''&nbsp; Es wird nun&nbsp; $n \neq 0$&nbsp; vorausgesetzt. Mit&nbsp; $T_1 = T_0$&nbsp; erhält man für den Realteil wegen&nbsp; $\text{cos}(2\pi n) = 1$:
+
'''(2)'''&nbsp; It is now assumed&nbsp; $n \neq 0$&nbsp;. With&nbsp; $T_1 = T_0$&nbsp; one obtains for the real part because of&nbsp; $\text{cos}(2\pi n) = 1$:
  
 
:$${\rm Re}[D_n^{(y)}] =\frac{1}{(2\pi n)^2}\cdot(1-\cos(2\pi n))=0.$$
 
:$${\rm Re}[D_n^{(y)}] =\frac{1}{(2\pi n)^2}\cdot(1-\cos(2\pi n))=0.$$
 
   
 
   
*Der Imagnärteil lautet:
+
*The imagnary part is:
  
 
:$${\rm Im}[D_n^{(y)}] =\frac{1}{(2\pi n)^2}\cdot(\sin(2\pi n))-\frac{1}{2\pi n}.$$
 
:$${\rm Im}[D_n^{(y)}] =\frac{1}{(2\pi n)^2}\cdot(\sin(2\pi n))-\frac{1}{2\pi n}.$$
 
   
 
   
*Wegen&nbsp; $\text{sin}(2\pi n) = 0$&nbsp; folgt daraus &nbsp; ${\rm Im}[D_n] =-{1}/({2\pi n}).$ Somit ist
+
*Because&nbsp; $\text{sin}(2\pi n) = 0$&nbsp; it follows that &nbsp; ${\rm Im}[D_n] =-{1}/({2\pi n}).$ Thus
  
 
:$$D_n^{(y)}=\frac{-\rm j}{2\pi n}={1}/{2} \cdot (A_n- {\rm j} \cdot B_n).$$
 
:$$D_n^{(y)}=\frac{-\rm j}{2\pi n}={1}/{2} \cdot (A_n- {\rm j} \cdot B_n).$$
 
   
 
   
*Der Koeffizientenvergleich liefert&nbsp; $A_n^{(y)} = 0$&nbsp; und&nbsp; $B_n^{(y)} = 1/(\pi n)$. Insbesondere sind&nbsp; $A_1^{(y)} \hspace{0.1cm}\underline{= 0}$&nbsp; und&nbsp; $B_1^{(y)}\hspace{0.1cm}\underline{ \approx 0.318}$.  
+
*The coefficient comparison yields&nbsp; $A_n^{(y)} = 0$&nbsp; and&nbsp; $B_n^{(y)} = 1/(\pi n)$.&nbsp; In particular&nbsp; $A_1^{(y)} \hspace{0.1cm}\underline{= 0}$&nbsp; und&nbsp; $B_1^{(y)}\hspace{0.1cm}\underline{ \approx 0.318}$.  
  
*Wie zu erwarten war, gilt stets $B_{-n}^{(y)} = -B_n^{(y)}$.
+
*As expected, $B_{-n}^{(y)} = -B_n^{(y)}$ always holds.
  
  
  
'''(3)'''&nbsp; Aus der in der Teilaufgabe&nbsp; '''(1)'''&nbsp; berechneten allgemeinen Gleichung folgt mit&nbsp; $T_1/T_0 = 1/2$:
+
'''(3)'''&nbsp; From the general equation calculated in subtask&nbsp; '''(1)'''&nbsp; it follows with&nbsp; $T_1/T_0 = 1/2$:
  
 
:$$D_n^{(x)}=\frac{2}{(2\pi n)^2}(1-\cos(\pi n))+{\rm j}\cdot \left[\frac{2\sin(\pi n)}{(2\pi n)^2}-\frac{1}{(2\pi n)}\right].$$
 
:$$D_n^{(x)}=\frac{2}{(2\pi n)^2}(1-\cos(\pi n))+{\rm j}\cdot \left[\frac{2\sin(\pi n)}{(2\pi n)^2}-\frac{1}{(2\pi n)}\right].$$
 
   
 
   
*Daraus erhält man die Cosinuskoeffizienten
+
*From this one obtains the cosine coefficients
  
:$$A_n^{(x)}={2}\cdot{\rm Re}[D_n] =\left\{ \begin{array}{cl} {\frac{\displaystyle 2}{\displaystyle(\pi n)^2}} & {\rm  f\ddot{u}r\; ungeradzahliges\; \it n ,} \\ 0 &  {\rm f\ddot{u}r\; geradzahliges\;\it n.} \end{array}\right. $$
+
:$$A_n^{(x)}={2}\cdot{\rm Re}[D_n] =\left\{ \begin{array}{cl} {\frac{\displaystyle 2}{\displaystyle(\pi n)^2}} & {\rm  for\; odd\; \it n ,} \\ 0 &  {\rm for\; even\;\it n.} \end{array}\right. $$
 
   
 
   
*Die Sinuskoeffizienten lauten:
+
*The sine coefficients are:
  
 
:$$B_n^{(x)}=-2\cdot{\rm Im}[D_n] =\frac{1}{\pi n}.$$
 
:$$B_n^{(x)}=-2\cdot{\rm Im}[D_n] =\frac{1}{\pi n}.$$
 
   
 
   
*Hierbei ist berücksichtigt, dass für alle ganzzahligen Werte von&nbsp; $n$&nbsp; die Funktion&nbsp; $\text{sin}(n\pi ) = 0$&nbsp; ist. Die jeweils ersten reellen Koeffizienten lauten
+
*Here it is taken into account that for all integer values of&nbsp; $n$&nbsp; the function&nbsp; $\text{sin}(n\pi ) = 0$&nbsp;. The first real coefficients are as follows
 
:$$A_1^{(x)} = 2/\pi^{2} \hspace{0.1cm}\underline{\approx 0.203},$$
 
:$$A_1^{(x)} = 2/\pi^{2} \hspace{0.1cm}\underline{\approx 0.203},$$
 
:$$B_1 = 1/\pi \hspace{0.1cm}\underline{\approx 0.318}.$$
 
:$$B_1 = 1/\pi \hspace{0.1cm}\underline{\approx 0.318}.$$
  
  
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2, 4 und 5</u>:
+
'''(4)'''&nbsp; The correct <u>solutions are 2, 4 and 5</u>:
*Das Signal&nbsp; $x(t)$&nbsp; ist gleich der Differenz zwischen&nbsp; $y(t)$&nbsp; und&nbsp; $z(t)$. Da&nbsp; $z(t)$&nbsp; eine gerade und&nbsp; $y(t)$&nbsp; eine ungerade Funktion ist, werden die Cosinuskoeffizienten&nbsp; $A_n$&nbsp; allein durch die Koeffizienten des Signals&nbsp; $z(t)$&nbsp; bestimmt, allerdings mit negativen Vorzeichen.  
+
*The signal&nbsp; $x(t)$&nbsp; is equal to the difference between&nbsp; $y(t)$&nbsp; and&nbsp; $z(t)$.&nbsp; Since&nbsp; $z(t)$&nbsp; is an even and&nbsp; $y(t)$&nbsp; an odd function, the cosine coefficients&nbsp; $A_n$&nbsp; are determined by the coefficients of the signal&nbsp; $z(t)$&nbsp; alone, but with negative signs.
*Die Sinuskoeffizienten $B_n$ stimmen vollständig mit denen von&nbsp; $y(t)$&nbsp; überein.  
+
*The sine coefficients&nbsp; $B_n$&nbsp; completely agree with those of&nbsp; $y(t)$.  
*Der Gleichsignalanteil von&nbsp; $x(t)$&nbsp; ergibt sich aus der Differenz der beiden Gleichanteile von&nbsp; $y(t)$&nbsp; und&nbsp; $z(t)$: &nbsp;  
+
*The DC component of&nbsp; $x(t)$&nbsp; results from the difference of the two DC components of&nbsp; $y(t)$&nbsp; und&nbsp; $z(t)$: &nbsp;  
 
:$$A_0 = 0.5 - 0.25 = 0.25.$$  
 
:$$A_0 = 0.5 - 0.25 = 0.25.$$  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^2. Periodische Signale^]]
+
[[Category:Signal Representation: Exercises|^2.4 Fourier Series^]]

Latest revision as of 10:49, 16 April 2021

Various periodic triangular signals

We consider the signal  $x(t)$,  defined by the two parameters  $T_0$  and  $T_1$  where  $T_1 \leq T_0$  should always apply.  For the complex Fourier coefficients

$$D_n=\frac{1}{T_0} \cdot \int_0^{T_0}x(t)\cdot\rm e^{-\rm j\it n\omega_0t}\,{\rm d} \it t$$

of this signal are obtained after mathematical transformations:

$$D_n=\frac{T_0/T_1} {(2\pi n)^2} \cdot \big(1-{\rm e}^{-{\rm j} 2\pi nT_1/T_0}\big)-\frac{\rm j}{2\pi n}.$$
  • The parameter set dealt with in subtasks  (1)  and  (3)    $($with $T_1 = T_0/2)$  is represented as the signal  $x(t)$ .
  • For  $T_1 = T_0$  ⇒   subtask  (2)  the function  $y(t)$ results.
  • In subtask  (4)  the signal  $z(t)$  is considered.  Its Fourier coefficients are:
$$A_0=1/4,\hspace{1cm} A_n=\left\{ \begin{array}{cl} {\frac{\displaystyle-2}{\displaystyle(\pi n)^2}} & {\rm for\; even\; \it n \rm ,} \\ 0 & {\rm for\; odd\; \it n,} \end{array}\right. $$
$$B_n=0\; \;\; \rm{ f\ddot{u}r\; alle\; \it n.}$$




Hints:




Questions

1

Calculate the coefficient  $D_0$  and show that it is always real.  What value results for  $T_1 = T_0/2$, i.e. for the signal  $x(t)$?

$D_0^{(x)}\ = \ $

2

Calculate the complex Fourier coefficients  $D_n^{(y)}$  for  $n \neq 0$  for the special case   $T_1 = T_0$  corresponding to the signal  $y(t)$ .
What are the coefficients  $A_n^{(y)}$  and  $B_n^{(y)}$,  especially for  $n = 1$?

$A_1^{(y)}\ = \ $

$B_1^{(y)}\ = \ $

3

Now calculate the coefficients  $A_n^{(x)}$  and  $B_n^{(x)}$  for the signal  $x(t)$  with  $T_1 = T_0/2$  for  $n \neq 0$.  What are the values for  $A_1^{(x)}$  and  $B_1^{(x)}$?

$A_1^{(x)}\ = \ $

$B_1^{(x)}\ = \ $

4

Which of the following statements are true regarding  $x(t)$,  $y(t)$  and  $z(t)$ ?

It is true that  $x(t) = y(t) + z(t)$.
It is true that  $x(t) = y(t) - z(t)$.
The cosine coefficients  $A_n$  of  $x(t)$  und  $z(t)$  are identical.
The cosine coefficients  $A_n$  of  $x(t)$  und  $z(t)$  are equal in magnitude.
The sine coefficients  $B_n$  of  $y(t)$  und  $z(t)$  are identical.


Solution

(1)  With Euler's theorem, the complex Fourier coefficient  $D_n$ can be represented as follows:

$${\rm Re} [D_n] =\frac{T_0/T_1}{(2\pi n)^2}\cdot(1-\cos(2\pi nT_1/T_0)),$$
$${\rm Im}[D_n] =\frac{T_0/T_1}{(2\pi n)^2} \cdot \sin(2\pi nT_1/T_0)-\frac{1}{2\pi n}.$$
  • With the approximation  $\text{sin}(\alpha ) \approx \alpha$  valid for small  $\alpha$–values one obtains for the imaginary part:
$${\rm Im}[D_n] =\frac{T_0/T_1}{(2\pi n)^2}\cdot(2\pi nT_1/T_0)-\frac{1}{2\pi n}=0.$$
  • For the real part one obtains with  $\text{cos}(\alpha) \approx 1 – \alpha^{2}/2$:
$${\rm Re}[D_n] =\frac{T_0/T_1}{(2\pi n)^2}\frac{(2\pi nT_1/T_0)^2}{2}=\frac{T_1/T_0}{2}.$$
  • For  $T_1 = T_0/2$  it follows that the DC signal coefficient  $D_0^{(x)} \hspace{0.1cm}\underline{= 0.25}$.
  • With  $T_1 = T_0$  it results in  $D_0^{(y)} = 0.5$.
  • A comparison with the signals   $x(t)$  and  $y(t)$ on the data page show the correctness of these results.


(2)  It is now assumed  $n \neq 0$ . With  $T_1 = T_0$  one obtains for the real part because of  $\text{cos}(2\pi n) = 1$:

$${\rm Re}[D_n^{(y)}] =\frac{1}{(2\pi n)^2}\cdot(1-\cos(2\pi n))=0.$$
  • The imagnary part is:
$${\rm Im}[D_n^{(y)}] =\frac{1}{(2\pi n)^2}\cdot(\sin(2\pi n))-\frac{1}{2\pi n}.$$
  • Because  $\text{sin}(2\pi n) = 0$  it follows that   ${\rm Im}[D_n] =-{1}/({2\pi n}).$ Thus
$$D_n^{(y)}=\frac{-\rm j}{2\pi n}={1}/{2} \cdot (A_n- {\rm j} \cdot B_n).$$
  • The coefficient comparison yields  $A_n^{(y)} = 0$  and  $B_n^{(y)} = 1/(\pi n)$.  In particular  $A_1^{(y)} \hspace{0.1cm}\underline{= 0}$  und  $B_1^{(y)}\hspace{0.1cm}\underline{ \approx 0.318}$.
  • As expected, $B_{-n}^{(y)} = -B_n^{(y)}$ always holds.


(3)  From the general equation calculated in subtask  (1)  it follows with  $T_1/T_0 = 1/2$:

$$D_n^{(x)}=\frac{2}{(2\pi n)^2}(1-\cos(\pi n))+{\rm j}\cdot \left[\frac{2\sin(\pi n)}{(2\pi n)^2}-\frac{1}{(2\pi n)}\right].$$
  • From this one obtains the cosine coefficients
$$A_n^{(x)}={2}\cdot{\rm Re}[D_n] =\left\{ \begin{array}{cl} {\frac{\displaystyle 2}{\displaystyle(\pi n)^2}} & {\rm for\; odd\; \it n ,} \\ 0 & {\rm for\; even\;\it n.} \end{array}\right. $$
  • The sine coefficients are:
$$B_n^{(x)}=-2\cdot{\rm Im}[D_n] =\frac{1}{\pi n}.$$
  • Here it is taken into account that for all integer values of  $n$  the function  $\text{sin}(n\pi ) = 0$ . The first real coefficients are as follows
$$A_1^{(x)} = 2/\pi^{2} \hspace{0.1cm}\underline{\approx 0.203},$$
$$B_1 = 1/\pi \hspace{0.1cm}\underline{\approx 0.318}.$$


(4)  The correct solutions are 2, 4 and 5:

  • The signal  $x(t)$  is equal to the difference between  $y(t)$  and  $z(t)$.  Since  $z(t)$  is an even and  $y(t)$  an odd function, the cosine coefficients  $A_n$  are determined by the coefficients of the signal  $z(t)$  alone, but with negative signs.
  • The sine coefficients  $B_n$  completely agree with those of  $y(t)$.
  • The DC component of  $x(t)$  results from the difference of the two DC components of  $y(t)$  und  $z(t)$:  
$$A_0 = 0.5 - 0.25 = 0.25.$$