Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.6: Even and Odd Time Signals"

From LNTwww
 
Line 57: Line 57:
 
:U(f=0.5kHz)=jAuTπsi(π/2)=j2π2AuT.
 
:U(f=0.5kHz)=jAuTπsi(π/2)=j2π2AuT.
  
*The imaginary part is numerically   Im[U(f=0.5kHz)]0.2mV/Hz_.  
+
*The imaginary part is   Im[U(f=0.5kHz)]0.2mV/Hz_.  
*In contrast, the si function at  fT=1  yields the value zero, while the cosine is equal to  1 . Thus, with  Au=1V  and  T=1ms one obtains:
+
*In contrast, the  $\rm si$–function at  fT=1  yields the value zero, while the cosine is equal to  1.  Thus with  Au=1V  and  T=1ms  one obtains:
 
   
 
   
 
:U(f=1kHz)=jAuT2πRe[...]=0_,Im[...]0.159mV/Hz_.
 
:U(f=1kHz)=jAuT2πRe[...]=0_,Im[...]0.159mV/Hz_.
Line 64: Line 64:
  
  
'''(2)'''  According to the mapping theorem, an odd time function  u(t)  always has an imaginary and at the same time odd spectrum    
+
'''(2)'''  According to the  "Assignment Theorem", an odd time function  u(t)  always has an imaginary and at the same time odd spectrum  $U( { - f} ) =  - U( f )$.  With the boundary transition  f  follows from the given equation
$U( { - f} ) =  - U( f ).$ With the boundary transition  f  follows from the given equation
 
 
   
 
   
 
:U(f)=jAuT2πfT[si(πfT)cos(πfT)]
 
:U(f)=jAuT2πfT[si(πfT)cos(πfT)]
  
the result  U(f=0)=0. Formally, one could confirm this result by applying l'Hospital's rule.  
+
the result  U(f=0)=0.  Formally, one could confirm this result by applying l'Hospital's rule.  
  
 
We proceed a little more pragmatically.
 
We proceed a little more pragmatically.
Line 77: Line 76:
  
 
*For even smaller frequency values, the result also becomes smaller and smaller.
 
*For even smaller frequency values, the result also becomes smaller and smaller.
*You get to the result  U(f=0)=0_, more quickly if you take into account that the integral over  u(t)  disappears.  
+
*You get to the result  U(f=0)=0_  more quickly if you take into account that the integral over  u(t)  disappears.  
 
*So you don't have to calculate at all.
 
*So you don't have to calculate at all.
  
  
  
'''(3)'''  The signal  x(t)  can be divided into the even and the odd part, which lead to the even real part and the odd imaginary part of  X(f) :
+
'''(3)'''  The signal  x(t)  can be divided into an even and an odd part, which lead to the even real part and the odd imaginary part of  X(f) :
*The even part is equal to the function  g(t)  with  Ag=3V. From this follows for the real part of the spectral value at  fT=0.5:
+
*The even part is equal to the function  g(t)  with  Ag=3V.  From this follows for the real part of the spectral value at  fT=0.5:
 
   
 
   
 
:Re[X(fT=0.5)]=AgTsi(π/2)=1.91mV/Hz_.
 
:Re[X(fT=0.5)]=AgTsi(π/2)=1.91mV/Hz_.
  
*The imaginary part results from the spectral function  U(f) with Au=1V. This was already calculated in subtask  '''(1)''' :
+
*The imaginary part results from the spectral function  U(f)  with Au=1V.  This was already calculated in subtask  '''(1)''':
 
   
 
   
 
:Im[X(fT=0.5)]0.2mV/Hz_.
 
:Im[X(fT=0.5)]0.2mV/Hz_.

Latest revision as of 15:22, 27 April 2021

"Wedge function" as well as an even and an odd time signal

We are looking for the spectrum  X(f)  of the pulse  x(t) sketched opposite, which rises linearly from  2V  to  4V  in the range from  –T/2  to  +T/2  and is zero outside.

The spectral functions of the signals  g(t)  and  u(t)  shown below are assumed to be known:

  • The even (German:  gerade) rectangular time function  g(t)  has the spectrum
G( f ) = A_g \cdot T \cdot {\mathop{\rm si}\nolimits}( { {\rm{\pi }}fT} ) \hspace{0.3cm} {\rm{with}}\hspace{0.3cm} {\mathop{\rm si}\nolimits}( x ) = {\sin ( x )}/{x}.
  • The spectrum of the odd (German:  ungerade) function  u(t)  is:
U( f ) = - {\rm{j}} \cdot \frac{ {A_u \cdot T}}{ {2{\rm{\pi }}fT}}\big[ {{\mathop{\rm si}\nolimits} ( { {\rm{\pi }}fT} ) - \cos ( { {\rm{\pi }}fT} )} \big].



Hints:

  • This exercise belongs to the chapter  Fourier Transform Theorems.
  • All the theorems presented here are illustrated with examples in the (German language) learning video
         Gesetzmäßigkeiten der Fouriertransformation   ⇒   "Regularities to the Fourier transform".
  • Solve this task with the help of the  Assignment Theorem.
  • For the first two subtasks use the signal parameters  A_u = 1\,\text{V}  and  T = 1\,\text{ms}.



Questions

1

Calculate the (imaginary) spectral values of the odd signal  u(t)  at the frequencies  f = 0.5\,\text{kHz}  and  f = 1\,\text{kHz}.

{\rm Im}\big[U(f=0.5 \,\text{kHz})\big] \ = \

 \text{mV/Hz}
{\rm Im}\big[U(f=1.0 \,\text{kHz})\big]\ = \

 \text{mV/Hz}

2

What is the spectral value of  u(t)  at the frequency  f = 0?     Hint: Think before you calculate.

{\rm Im}\big[U(f=0)\big]\ = \

 \text{mV/Hz}

3

Using the result from  (1)  calculate the spectral value of the signal  x(t)  at the frequency  f=0.5 \,\text{kHz}.

{\rm Re}\big[X(f=0.5 \,\text{kHz})\big]\ = \

 \text{mV/Hz}
{\rm Im}\big[X(f=0.5 \,\text{kHz})\big]\ = \

 \text{mV/Hz}


Solution

(1)  For  f \cdot T = 0.5  one obtains from the given equation:

U( {f = 0.5\;{\rm{kHz}}} ) = - {\rm{j}} \cdot \frac{ {A_u \cdot T}}{ {\rm{\pi }}} \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) = - {\rm{j}} \cdot \frac{2}{ { {\rm{\pi }}^{\rm{2}} }} \cdot A_{\rm u} \cdot T.
  • The imaginary part is  {\rm Im}[U(f=0.5 \,\text{kHz})]\; \underline{\approx 0.2 \,\text{mV/Hz}}.
  • In contrast, the  \rm si–function at  f \cdot T = 1  yields the value zero, while the cosine is equal to  -1.  Thus with  A_u = 1\,\text{V}  and  T = 1\,\text{ms}  one obtains:
U( {f = 1\;{\rm{kHz}}} ) = {\rm{j}} \cdot \frac{ {A_{\rm u} \cdot T}}{ { {\rm{2\pi }}}} \hspace{0.3 cm} \Rightarrow \hspace{0.3 cm} {\rm Re} [\text{...}] \hspace{0.15 cm}\underline{ = 0}, \hspace{0.3 cm}{\rm Im} [\text{...}] \hspace{0.15 cm}\underline{\approx 0.159 \;{\rm{mV/Hz}}}.


(2)  According to the  "Assignment Theorem", an odd time function  u(t)  always has an imaginary and at the same time odd spectrum  U( { - f} ) = - U( f ).  With the boundary transition  f \rightarrow \infty  follows from the given equation

U( f ) = - {\rm{j}} \cdot \frac{ {A_u \cdot T}}{ {2{\rm{\pi }}fT}}\big[ { {\mathop{\rm si}\nolimits} ( {{\rm{\pi }}fT} ) - \cos ( { {\rm{\pi }}fT} )} \big]

the result  U(f = 0) = 0.  Formally, one could confirm this result by applying l'Hospital's rule.

We proceed a little more pragmatically.

  • For example, if we set  f \cdot T = 0.01, we obtain:

U( {f \cdot T = 0.01}) = -{\rm{j}} \cdot \frac{ {A_{\rm u} \cdot T}}{{0.02{\rm{\pi }}}}\big[ {{\mathop{\rm si}\nolimits} ( {0.01{\rm{\pi }}} ) - \cos ( {0.01{\rm{\pi }}} )} \big ] = - {\rm{j}} \cdot \frac{ {A{\rm u} \cdot T}}{{0.02{\rm{\pi }}}}( {0.999836 - 0.999507} ) \approx - {\rm{j}} \cdot 5 \cdot 10^{ - 6} \;{\rm{V/Hz}}{\rm{.}}

  • For even smaller frequency values, the result also becomes smaller and smaller.
  • You get to the result  U(f = 0)\;\underline{ = 0}  more quickly if you take into account that the integral over  u(t)  disappears.
  • So you don't have to calculate at all.


(3)  The signal  x(t)  can be divided into an even and an odd part, which lead to the even real part and the odd imaginary part of  X(f) :

  • The even part is equal to the function  g(t)  with  A_g = 3\,\text{V}.  From this follows for the real part of the spectral value at  f \cdot T = 0.5:
{\mathop{\rm Re}\nolimits} \left[ {X( {f \cdot T = 0.5} )} \right] = A_{\rm g} \cdot T \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \hspace{0.15 cm}\underline{= 1.91 \;{\rm{mV/Hz}}}{\rm{.}}
  • The imaginary part results from the spectral function  U(f)  with A_u = 1\,\text{V}.  This was already calculated in subtask  (1):
{\mathop{\rm Im}\nolimits} \left[ {X( {f \cdot T = 0.5} )} \right] \hspace{0.15 cm}\underline{\approx - 0.2 \;{\rm{mV/Hz}}}{\rm{.}}