Difference between revisions of "Linear and Time Invariant Systems/Classification of the Distortions"

From LNTwww
Line 78: Line 78:
 
Note:  
 
Note:  
 
*The damping factor  $α$  can be completely reversed by a receiver-side gain of  $1/α = 1.25$, but it must be taken into account that this also increases any noise.  
 
*The damping factor  $α$  can be completely reversed by a receiver-side gain of  $1/α = 1.25$, but it must be taken into account that this also increases any noise.  
*However, the transit time  $τ$  cannot be compensated due to  [[Signal_Representation/Signal_classification#Kausale_und_akausale_Signale|Kausalitätsgründen]]  nicht kompensiert werden.  It now depends on the application whether such a transit time is subjectively perceived as disturbing or not. }}
+
*However, the transit time  $τ$  cannot be compensated due to  [[Signal_Representation/Signal_classification#Kausale_und_akausale_Signale|Kausalitätsgründen]] .  It now depends on the application whether such a transit time is subjectively perceived as disturbing or not. }}
  
  

Revision as of 21:00, 10 May 2021

# OVERVIEW OF THE SECOND MAIN CHAPTER #


$\text{Definition:}$  Generally, undesirable deterministic changes of a message signal by a transmission system are considered as  distortions .


In addition to stochastic interferences (noise, crosstalk, etc.), such deterministic distortions are a critical limitation on transmission quality and rate for many messaging systems.

This chapter presents these distortions in a summarising way, in particular:

  • the quantitative detection of such signal falsifications via the distortion power,
  • the distinguishing features between nonlinear and linear distortions,
  • the meaning and computation of the distortion factor in nonlinear systems and
  • the effects of linear distortions of attenuation and phase distortions.


Further information on the topic of "distortions" as well as tasks, simulations and programming exercises can be found in

  • Chapter 6: Linear Time-Invariant Systems (Programme lzi)


of the practical course "Simulation Methods in Communications Engineering". This (former) LNT course at TU Munich is based on

  • the educational software package  LNTsim   ⇒   Link refers to the ZIP-version of the programme, and
  • this practical course guide  Praktikumsanleitung   ⇒   Link refers to the PDF-version; Chapter 6: pages 99-118.


Prerequisites for the Entire Second Main Chapter


In the following, we consider a system whose input is the signal  $x(t)$  with the corresponding spectrum  $X(f)$ . The output signal is denoted by  $y(t)$  and its spectrum by  $Y(f).$

Description of a linear system

The block labelled "system" can be a part of an electrical circuit or a complete transmission system consisting of transmitter, channel and receiver.


For the whole main chapter ”Signal Distortions and Equalisation” the following shall apply:

  • The system be time-invariant. If the input signal  $x(t)$  results in the output signal  $y(t)$, then a later input signal of the same form – in particular  $x(t - t_0)$  – will result in the signal  $y(t - t_0)$ .
  •  No noise  is considered, which is always present in real systems.  For the description of these phenomena we refer to the  $\rm LNTwww$–book  Stochastische Signaltheorie.
  •  No detailed knowledge  about the system is assumed.  In the following, all system properties are derived from the signals  $x(t)$  and  $y(t)$  or their spectra alone.
  • In particular, no specifications are given with regards to  linearity for the time being.  The "system" can be linear (prerequisite for the application of the superposition principle) or non-linear.
  • Not all system properties are discernible from a single test signal  $x(t)$  and its response  $y(t)$ . Therefore,  sufficiently many test signals  must be used for evaluation.


In the following, we will classify transmission systems in more detail in this respect.

Ideal and Distortion-free System


$\text{Definition:}$  One deals with an  ideal system if the output signal  $y(t)$  is exactly equal to the input signal  $x(t)$ :

$$y(t) \equiv x(t).$$


It should be noted that such an ideal system does not exist in reality even if statistical disturbances and noise processes, that always exist but are not considered in this book, are disregarded. Every transmission medium exhibits losses (attenuations) and transit times. Even if these physical phenomena are very small, they are never zero. It is therefore necessary to introduce a somewhat less strict quality characteristic.

$\text{Definition:}$  A  distortion-free system  exists if the following condition is fulfilled:

$$y(t) = \alpha \cdot x(t - \tau).$$

Here,  $α$  describes the damping factor and  $τ$  the transit time.


If this condition is not met, the system is said to be distortive.

$\text{Example 1:}$  The following graph shows the input signal  $x(t)$  and the output signal  $y(t)$  of a nonideal but distortion-free system.  The system parameters are  $α = 0.8$  and  $τ = 0.25 \ \rm ms$.

Exemplary signals of a distortion-free system

Note:

  • The damping factor  $α$  can be completely reversed by a receiver-side gain of  $1/α = 1.25$, but it must be taken into account that this also increases any noise.
  • However, the transit time  $τ$  cannot be compensated due to  Kausalitätsgründen .  It now depends on the application whether such a transit time is subjectively perceived as disturbing or not.


Beispielsweise wird man selbst bei einer Laufzeit von einer Sekunde die (unidirektionale) TV–Übertragung einer Veranstaltung noch immer als „live” bezeichnen.  Dagegen werden bei bidirektionaler Kommunikation – zum Beispiel einem Telefonat – schon Laufzeiten von  $\text{300 ms}$  als sehr störend empfunden. Man wartet entweder auf die Reaktion des Gesprächspartners oder beide Teilnehmer fallen sich ins Wort.

Quantitatives Maß für die Signalverzerrungen


Wir betrachten nun ein verzerrendes System anhand von Eingangs– und Ausgangssignal.  Dabei setzen wir zunächst voraus, dass außer den Signalverzerrungen nicht zusätzlich noch ein für alle Frequenzen konstanter Dämpfungsfaktor  $α$  und eine für alle Frequenzen konstante Laufzeit  $τ$  wirksam sind. Bei den nachfolgend skizzierten Signalausschnitten sind diese Voraussetzungen erfüllt.

Ein– und Ausgang eines verzerrenden Systems und Fehlersignal (unten)

In der Grafik ist zusätzlich zu den Signalen  $x(t)$  und  $y(t)$  auch das Differenzsignal eingezeichnet:

$$\varepsilon(t) = y(t) - x(t).$$

Als quantitatives Maß für die Stärke der Verzerrungen eignet sich zum Beispiel der  quadratische Mittelwert dieses Differenzsignals:

$$\overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int_{ 0 }^{ T_{\rm M}} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t\hspace{0.4cm} \left( = P_{\rm V} \right).$$


Zu dieser Gleichung ist Folgendes anzumerken:

  • Die Messdauer  $T_{\rm M}$  muss hinreichend groß gewählt werden.  Eigentlich müsste diese Gleichung mit Grenzübergang formuliert werden.
  • Der oben angegebene quadratische Mittelwert wird oft auch als der mittlere quadratische Fehler  $\rm (MQF)$  oder als die  Verzerrungsleistung  $P_{\rm V}$  bezeichnet.
  • Sind  $x(t)$  und  $y(t)$  Spannungssignale, so besitzt  $P_{\rm V}$  die Einheit  ${\rm V}^2$, das heißt, die Leistung ist nach obiger Definition auf den Widerstand  $R = 1 \ Ω$  bezogen.


$\text{Definition:}$  Mit der  (auf  $R = 1 \ Ω$  bezogenen)  Leistung  $P_x$  des Eingangssignals  $x(t)$  kann das  Signal–zu–Verzerrungs–Leistungsverhältnis  angegeben werden:

$$\rho_{\rm V} = \frac{ P_{x} }{P_{\rm V} } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} = 10 \cdot \lg \hspace{0.1cm}\frac{ P_{x} }{P_{\rm V} }\hspace{0.3cm} \left( {\rm in \hspace{0.15cm} dB} \right).$$

Bei den in der oberen Grafik dargestellten Signalen gilt  $P_x = 4 \ {\rm V}^2$,  $P_{\rm V} = 0.04 \ {\rm V}^2$  und damit  $10 \cdot {\rm lg} \ ρ_{\rm V} = 20 \ \rm dB$.


Wir verweisen auf das interaktive Applet  Lineare Verzerrungen periodischer Signale.

Berücksichtigung von Dämpfung und Laufzeit


Die auf der letzten Seite angegebenen Gleichungen führen dann nicht zu verwertbaren Aussagen, wenn zusätzlich eine Dämpfung  $α$  und/oder eine Laufzeit  $τ$  im System wirksam ist.  Die Grafik zeigt das gedämpfte, verzögerte und verzerrte Signal

Berücksichtigung von Dämpfung und Laufzeit
$$y(t) = \alpha \cdot x(t - \tau) + \varepsilon_1(t).$$

Im Term  $ε_1(t)$  sind alle Verzerrungen zusammengefasst.  Man erkennt an der grünen Fläche, dass das Fehlersignal  $ε_1(t)$  relativ klein ist.

Sind dagegen die Dämpfung  $α$  und die Laufzeit  $τ$  unbekannt, so ist Folgendes zu beachten:

  • Das so ermittelte Fehlersignal  $ε_2(t) = y(t) - x(t)$  ist trotz kleiner Verzerrungen  $ε_1(t)$  relativ groß.
  • Anstelle der Verzerrungsleistung muss hier die Verzerrungsenergie betrachtet werden, da  $x(t)$  und  $y(t)$  energiebegrenzte Signale sind.
  • Die Verzerrungsenergie erhält man, in dem man die unbekannten Größen  $α$  und  $τ$  variiert und auf diese Weise das Minimum des mittleren quadratischen Fehlers ermittelt:
$$E_{\rm V} = \min_{\alpha, \ \tau} \int_{ - \infty }^{ + \infty} {\big[y(t) - \left(\alpha \cdot x(t - \tau) \right) \big]^2}\hspace{0.1cm}{\rm d}t.$$
  • Die Energie des gedämpften und verzögerten Signals  $α · x(t - τ)$  ist unabhängig von der Laufzeit  $τ$  gleich  $α^2 · E_x$. Für das Signal–zu–Verzerrungs–Leistungsverhältnis gilt somit:
$$\rho_{\rm V} = \frac{ \alpha^2 \cdot E_{x}}{E_{\rm V}}\hspace{0.3cm}{\rm bzw.}\hspace{0.3cm}\rho_{\rm V}= \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} .$$
  • Die erste dieser beiden Gleichungen gilt für zeitlich begrenzte und damit energiebegrenzte Signale, die zweite für zeitlich unbegrenzte, also leistungsbegrenzte Signale entsprechend der Seite  Energiebegrenzte und leistungsbegrenzte Signale  im Buch „Signaldarstellung”.

Lineare und nichtlineare Verzerrungen


Man unterscheidet zwischen linearen und nichtlinearen Verzerrungen:

Ist das System linear und zeitinvariant  $(\rm LZI)$, so wird es vollständig durch seinen  Frequenzgang  $H(f)$ charakterisiert, und es lässt sich Folgendes feststellen:

  • Entspechend der  $H(f)$–Definition gilt für das Ausgangsspektrum:   $Y(f)=X(f) · H(f)$.   Daraus folgt nach den Rechenregeln der Multiplkation, dass  $Y(f)$  keine Frequenzanteile beinhalten kann, die nicht schon in  $X(f)$  enthalten sind.
  • Die Umkehrung besagt:   Das Ausgangssignal  $y(t)$  kann jede Frequenz  $f_0$  beinhalten, die bereits im Eingangssignal  $x(t)$  enthalten ist. Voraussetzung ist also, dass  $X(f_0) ≠ 0$  gilt.
  • Bei einem LZI–System ist die absolute Bandbreite  $(B_y)$  des Ausgangssignals nie größer als die Bandbreite  $(B_x)$  des Eingangssignals:   $B_y \le B_x .$


$\text{Fazit:}$  Die Unterschiede zwischen linearen und nichtlinearen Verzerrungen sollen anhand einses Schaubildes verdeutlicht werden:

Lineare und nichtlineare Verzerrungen
  • In der oberen Grafik gilt  $B_y = B_x$.  Es liegen  lineare Verzerrungen  vor, da sich in diesem Frequenzband  $X(f)$  und  $Y(f)$  unterscheiden.
  • Eine Bandbegrenzung  $(B_y < B_x)$  ist eine Sonderform linearer Verzerrungen, die im  übernächsten Kapitel  behandelt werden.



  • Die untere Grafik zeigt ein Beispiel für  nichtlineare Verzerrungen  $(B_y > B_x)$.  Für ein solches System kann kein Frequenzgang  $H(f)$  angegeben werden.
  • Welche Beschreibungsgrößen für nichtlineare Systeme geeignet sind, wird im nächsten Kapitel  Nichtlineare Verzerrungen  dargelegt.


Bei den meisten realen Übertragungskanälen treten sowohl lineare als auch nichtlineare Verzerrungen auf.  Für eine ganze Reihe von Problemstellungen ist jedoch die klare Trennung der beiden Verzerrungsarten essentiell.  In  [Kam04][1]  wird ein entsprechendes Ersatzmodell angegeben.


Wir verweisen hier auf das Lernvideo  Lineare und nichtlineare Verzerrungen .

Aufgaben zum Kapitel

Aufgabe 2.1: Linear? - Nichtlinear?

Aufgabe 2.1Z: Verzerrung und Entzerrung

Aufgabe 2.2: Verzerrungsleistung

Aufgabe 2.2Z: Nochmals Verzerrungsleistung



Quellenverzeichnis

  1. Kammeyer, K.D.: Nachrichtenübertragung. Stuttgart: B.G. Teubner, 4. Auflage, 2004.