Difference between revisions of "Aufgaben:Exercise 3.5Z: Integration of Dirac Functions"

From LNTwww
 
(6 intermediate revisions by 4 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID515__Sig_Z_3_5_neu.png|right|frame|Integration von Diracfunktionen ]]
+
[[File:P_ID515__Sig_Z_3_5_neu.png|right|frame|Integration of Dirac functions ]]
Wie in der  [[Aufgaben:3.5_Differentiation_eines_Dreicksignals|Aufgabe 3.5]]  soll das Spektrum  ${Y(f)}$  des Signals
+
Like in  [[Aufgaben:3.5_Differentiation_eines_Dreicksignals|Exercise 3.5]]  the spectrum  ${Y(f)}$  of the signal
:$$y( t ) = \left\{ \begin{array}{c} A \\  - A \\  0 \\  \end{array} \right.\quad \begin{array}{*{20}c}  {{\rm{f \ddot{u}r}}}  \\  {{\rm{f\ddot{u} r}}}  \\  {\rm{sonst.}}  \\ \end{array}\;\begin{array}{*{20}c}  { - T \le t < 0,}  \\  {0 < t \le T,}  \\  {}  \\\end{array}$$
+
:$$y( t ) = \left\{ \begin{array}{c} A \\  - A \\  0 \\  \end{array} \right.\quad \begin{array}{*{20}c}  {{\rm{for}}}  \\  {{\rm{for}}}  \\  {\rm{else.}}  \\ \end{array}\;\begin{array}{*{20}c}  { - T \le t < 0,}  \\  {0 < t \le T,}  \\  {}  \\\end{array}$$
ermittelt werden. Es gelte wieder&nbsp; $A = 1 \,\text{V}$&nbsp; und&nbsp; $T = 0.5 \,\text{ms}$.
+
can be determined.&nbsp; Again,&nbsp; $A = 1 \,\text{V}$&nbsp; and&nbsp; $T = 0.5 \,\text{ms}$&nbsp; apply.
  
Ausgegangen wird vom Zeitsignal&nbsp; ${x(t)}$&nbsp; gemäß der mittleren Skizze, das sich aus drei Diracimpulsen bei&nbsp; $–T$,&nbsp; $0$&nbsp; und&nbsp; $+T$&nbsp; mit den Impulsgewichte&nbsp; ${AT}$,&nbsp; $-2{AT}$&nbsp; und&nbsp; ${AT}$&nbsp; zusammensetzt.
+
Assume the time signal&nbsp; ${x(t)}$&nbsp; according to the middle sketch, which is composed of three Dirac pulses at&nbsp; $–T$,&nbsp; $0$&nbsp; and&nbsp; $+T$&nbsp; with the pulse weights&nbsp; ${AT}$,&nbsp; $-2{AT}$&nbsp; und&nbsp; ${AT}$&nbsp;.
  
Die Spektralfunktion&nbsp; ${X(f)}$&nbsp; kann durch Anwendung des&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Vertauschungssatz|Vertauschungssatzes]]&nbsp; direkt angegeben werden, wenn man berücksichtigt, dass die zu&nbsp; ${U(f)}$&nbsp; gehörige Zeitfunktion wie folgt lautet (siehe untere Skizze):
+
The spectral function&nbsp; ${X(f)}$&nbsp; can be given directly by applying the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Duality_Theorem|Duality Theorem]]&nbsp; if one takes into account that the time function belonging to&nbsp; ${U(f)}$&nbsp; is as follows (see lower sketch):
 
:$$u( t ) =  - 2A + 2A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$
 
:$$u( t ) =  - 2A + 2A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$
  
Line 18: Line 18:
  
  
 
+
''Hints:''  
 
+
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Fourier_Transform_Theorems|Fourier Transform Theorems]].
''Hinweise:''  
+
*All the laws presented here  are illustrated with examples in the (German language) learning video<br> &nbsp; &nbsp; &nbsp;[[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] &nbsp; &rArr; &nbsp;  "Regularities to the Fourier transform".
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Signal_Representation/Fourier_Transform_Laws|Gesetzmäßigkeiten der Fouriertransformation]].
+
*The following relationship exists between&nbsp; ${x(t)}$&nbsp; and&nbsp; ${y(t)}$&nbsp;:
*Alle diese Gesetzmäßigkeiten werden im Lernvideo&nbsp; [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]]&nbsp; an Beispielen verdeutlicht.
 
*Zwischen&nbsp; ${x(t)}$&nbsp; und&nbsp; ${y(t)}$&nbsp; besteht folgender Zusammenhang:
 
 
:$$y( t ) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau  )}\, {\rm d}\tau .$$
 
:$$y( t ) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau  )}\, {\rm d}\tau .$$
*Der&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Integrationssatz|Integrationssatz]]&nbsp; lautet in entsprechend angepasster Form:
+
*The&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Integration_Theorem|Integration Theorem]]&nbsp; reads in a correspondingly adapted form:
 
:$$\frac{1}{T}\cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau  )}\,\, {\rm d}\tau\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ X( f ) \cdot \left( {\frac{1}{{{\rm{j}}\cdot 2{\rm{\pi }\cdot }fT}} + \frac{1}{2T}\cdot {\rm \delta} ( f )} \right).$$
 
:$$\frac{1}{T}\cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau  )}\,\, {\rm d}\tau\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ X( f ) \cdot \left( {\frac{1}{{{\rm{j}}\cdot 2{\rm{\pi }\cdot }fT}} + \frac{1}{2T}\cdot {\rm \delta} ( f )} \right).$$
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Spektralfunktion&nbsp; ${X(f)}$. Wie groß ist deren Betrag bei den Frequenzen&nbsp; $f = 0$&nbsp; und&nbsp; $f = 1\, \text{kHz}$?
+
{Calculate the spectral function&nbsp; ${X(f)}$.&nbsp; What is its magnitude at the frequencies&nbsp; $f = 0$&nbsp; and&nbsp; $f = 1\, \text{kHz}$?
 
|type="{}"}
 
|type="{}"}
 
$|{X(f = 0)}| \ = \ $ { 0. }  &nbsp;$\text{mV/Hz}$
 
$|{X(f = 0)}| \ = \ $ { 0. }  &nbsp;$\text{mV/Hz}$
Line 39: Line 37:
  
  
{Berechnen Sie die Spektralfunktion&nbsp; ${Y(f)}$. Welche Werte ergeben sich bei den Frequenzen&nbsp; $f = 0$&nbsp; und&nbsp; $f = 1\, \text{kHz}$?
+
{Calculate the spectral function&nbsp; ${Y(f)}$.&nbsp; What values result at the frequencies&nbsp; $f = 0$&nbsp; and&nbsp; $f = 1\, \text{kHz}$?
 
|type="{}"}
 
|type="{}"}
 
$|{Y(f = 0)}|\ = \ $ { 0. }  &nbsp;$\text{mV/Hz}$
 
$|{Y(f = 0)}|\ = \ $ { 0. }  &nbsp;$\text{mV/Hz}$
Line 48: Line 46:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Im Angabenteil zur Aufgabe finden Sie die Fourierkorrespondenz zwischen&nbsp; ${u(t)}$&nbsp; und&nbsp; ${U(f)}$.  
+
'''(1)'''&nbsp;  In the task description you will find the Fourier correspondence between&nbsp; ${u(t)}$&nbsp; and&nbsp; ${U(f)}$.  
*Da sowohl die Zeitfunktionen&nbsp; ${u(t)}$&nbsp; und&nbsp; ${x(t)}$&nbsp; als auch die dazugehörigen Spektren&nbsp; ${U(f)}$&nbsp; und&nbsp; ${X(f)}$&nbsp; gerade und reell sind, kann man&nbsp; ${X(f)}$&nbsp; durch Anwendung des Vertauschungssatzes leicht berechnen:
+
*Since both the time functions&nbsp; ${u(t)}$&nbsp; and&nbsp; ${x(t)}$&nbsp; and the corresponding spectra&nbsp; ${U(f)}$&nbsp; and&nbsp; ${X(f)}$&nbsp; are even and real,&nbsp; ${X(f)}$&nbsp; can be easily calculated by applying the "Duality Theorem":
 
:$$X( f ) =  - 2 \cdot A \cdot T  + 2 \cdot A \cdot T \cdot \cos \left( {{\rm{2\pi }}fT} \right).$$
 
:$$X( f ) =  - 2 \cdot A \cdot T  + 2 \cdot A \cdot T \cdot \cos \left( {{\rm{2\pi }}fT} \right).$$
*Wegen der Beziehung&nbsp; $\sin^{2}(\alpha) = (1 – \cos(\alpha))/2$&nbsp; kann hierfür auch geschrieben werden:
+
*Because of the relation&nbsp; $\sin^{2}(\alpha) = (1 – \cos(\alpha))/2$&nbsp; it can also be written for this:
 
:$$X( f ) =  - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} ).$$
 
:$$X( f ) =  - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} ).$$
:*Bei der Frequenz&nbsp; $f = 0$&nbsp; hat&nbsp; ${x(t)}$&nbsp; keine Spektralanteile &nbsp; &rArr; &nbsp;  ${X(f = 0)} \;\underline{= 0}$.  
+
:*At frequency&nbsp; $f = 0$&nbsp; the signal&nbsp; ${x(t)}$&nbsp; has no spectral components&nbsp; &rArr; &nbsp;  ${X(f = 0)} \;\underline{= 0}$.  
:*Für&nbsp; $f = 1 \,\text{kHz}$&nbsp; &ndash; also&nbsp; $f \cdot T = 0.5$&nbsp; &ndash; &nbsp; gilt dagegen:
+
:*For&nbsp; $f = 1 \,\text{kHz}$&nbsp; &ndash; and also&nbsp; $f \cdot T = 0.5$&nbsp; &ndash; &nbsp; on the other hand:
 
:$$X( f  =  1\;{\rm{kHz}} )  =    - 4 \cdot A \cdot T = -2 \cdot 10^{ - 3} \;{\rm{V/Hz}}\;  \Rightarrow \;
 
:$$X( f  =  1\;{\rm{kHz}} )  =    - 4 \cdot A \cdot T = -2 \cdot 10^{ - 3} \;{\rm{V/Hz}}\;  \Rightarrow \;
 
|X( {f = 1\;{\rm{kHz}}} )|  \hspace{0.15 cm}\underline{=  2  \;{\rm{mV/Hz}}}{\rm{.}}$$
 
|X( {f = 1\;{\rm{kHz}}} )|  \hspace{0.15 cm}\underline{=  2  \;{\rm{mV/Hz}}}{\rm{.}}$$
Line 62: Line 60:
  
  
'''(2)'''&nbsp; Das Spektrum&nbsp; ${Y(f)}$&nbsp; kann aus&nbsp; ${X(f)}$&nbsp; durch Anwendung des Integrationssatzes ermittelt werden.  
+
'''(2)'''&nbsp; The spectrum&nbsp; ${Y(f)}$&nbsp; can be determined from&nbsp; ${X(f)}$&nbsp; by applying the&nbsp; "Integration Theorem".
*Wegen&nbsp; ${X(f = 0)} = 0$&nbsp; muss die Diracfunktion bei der Frequenz&nbsp; $f = 0$&nbsp; nicht berücksichtigt werden und man erhält:
+
*Because of&nbsp; ${X(f = 0)} = 0$&nbsp; the Dirac function does not have to be taken into account at the frequency&nbsp; $f = 0$&nbsp; and one obtains:
 
:$$Y( f ) = \frac{X( f )}{{{\rm{j}} \cdot 2{\rm{\pi }}fT}} = \frac{{ - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{j}}\cdot 2{\rm{\pi }}fT}} = 2{\rm{j}} \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$
 
:$$Y( f ) = \frac{X( f )}{{{\rm{j}} \cdot 2{\rm{\pi }}fT}} = \frac{{ - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{j}}\cdot 2{\rm{\pi }}fT}} = 2{\rm{j}} \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$
*Es ergibt sich selbstverständlich das gleiche Ergebnis wie in der&nbsp; [[Aufgaben:3.5_Differentiation_eines_Dreicksignals|Aufgabe 3.5]]:
+
*Of course, the result is the same as in&nbsp; [[Aufgaben:3.5_Differentiation_eines_Dreicksignals|Exercise 3.5]]:
:*Bei der Frequenz&nbsp; $f = 0$&nbsp; hat auch&nbsp;  ${y(t)}$&nbsp; keine Spektralanteile &nbsp; &rArr; &nbsp;  ${Y(f = 0)} \;\underline{= 0}$.   
+
:*At frequency&nbsp; $f = 0$&nbsp; The signal&nbsp;  ${y(t)}$&nbsp; also has no spectral components&nbsp; &rArr; &nbsp;  ${Y(f = 0)} \;\underline{= 0}$.   
:*Für&nbsp; $f = 1\,\text{kHz} \ \ (f \cdot T = 0.5)$&nbsp; erhält man gegenüber&nbsp; $X(f)$&nbsp; einen um den Faktor&nbsp; $\pi$&nbsp; kleineren Wert:
+
:*For&nbsp; $f = 1\,\text{kHz} \ \ (f \cdot T = 0.5)$&nbsp; one obtains a value smaller by a factor&nbsp; $\pi$&nbsp; compared to&nbsp; $X(f)$:
 
:$$|Y( {f = 1\;{\rm{kHz}}} )| =  \frac{4 \cdot A \cdot T}{\rm{\pi }} \hspace{0.15 cm}\underline{=  {\rm{0}}{\rm{.636}}  \;{\rm{mV/Hz}}}{\rm{.}}$$
 
:$$|Y( {f = 1\;{\rm{kHz}}} )| =  \frac{4 \cdot A \cdot T}{\rm{\pi }} \hspace{0.15 cm}\underline{=  {\rm{0}}{\rm{.636}}  \;{\rm{mV/Hz}}}{\rm{.}}$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 73: Line 71:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^3.3 Fourier Transform Theorems^]]
+
[[Category:Signal Representation: Exercises|^3.3 Fourier Transform Theorems^]]

Latest revision as of 14:21, 24 May 2021

Integration of Dirac functions

Like in  Exercise 3.5  the spectrum  ${Y(f)}$  of the signal

$$y( t ) = \left\{ \begin{array}{c} A \\ - A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{20}c} {{\rm{for}}} \\ {{\rm{for}}} \\ {\rm{else.}} \\ \end{array}\;\begin{array}{*{20}c} { - T \le t < 0,} \\ {0 < t \le T,} \\ {} \\\end{array}$$

can be determined.  Again,  $A = 1 \,\text{V}$  and  $T = 0.5 \,\text{ms}$  apply.

Assume the time signal  ${x(t)}$  according to the middle sketch, which is composed of three Dirac pulses at  $–T$,  $0$  and  $+T$  with the pulse weights  ${AT}$,  $-2{AT}$  und  ${AT}$ .

The spectral function  ${X(f)}$  can be given directly by applying the  Duality Theorem  if one takes into account that the time function belonging to  ${U(f)}$  is as follows (see lower sketch):

$$u( t ) = - 2A + 2A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$




Hints:

$$y( t ) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\, {\rm d}\tau .$$
$$\frac{1}{T}\cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\,\, {\rm d}\tau\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ X( f ) \cdot \left( {\frac{1}{{{\rm{j}}\cdot 2{\rm{\pi }\cdot }fT}} + \frac{1}{2T}\cdot {\rm \delta} ( f )} \right).$$


Questions

1

Calculate the spectral function  ${X(f)}$.  What is its magnitude at the frequencies  $f = 0$  and  $f = 1\, \text{kHz}$?

$|{X(f = 0)}| \ = \ $

 $\text{mV/Hz}$
$|{X(f = 1\, \text{kHz})}|\ = \ $

 $\text{mV/Hz}$

2

Calculate the spectral function  ${Y(f)}$.  What values result at the frequencies  $f = 0$  and  $f = 1\, \text{kHz}$?

$|{Y(f = 0)}|\ = \ $

 $\text{mV/Hz}$
$|{Y(f = 1\, \text{kHz})}| \ = \ $

 $\text{mV/Hz}$


Solution

(1)  In the task description you will find the Fourier correspondence between  ${u(t)}$  and  ${U(f)}$.

  • Since both the time functions  ${u(t)}$  and  ${x(t)}$  and the corresponding spectra  ${U(f)}$  and  ${X(f)}$  are even and real,  ${X(f)}$  can be easily calculated by applying the "Duality Theorem":
$$X( f ) = - 2 \cdot A \cdot T + 2 \cdot A \cdot T \cdot \cos \left( {{\rm{2\pi }}fT} \right).$$
  • Because of the relation  $\sin^{2}(\alpha) = (1 – \cos(\alpha))/2$  it can also be written for this:
$$X( f ) = - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} ).$$
  • At frequency  $f = 0$  the signal  ${x(t)}$  has no spectral components  ⇒   ${X(f = 0)} \;\underline{= 0}$.
  • For  $f = 1 \,\text{kHz}$  – and also  $f \cdot T = 0.5$  –   on the other hand:
$$X( f = 1\;{\rm{kHz}} ) = - 4 \cdot A \cdot T = -2 \cdot 10^{ - 3} \;{\rm{V/Hz}}\; \Rightarrow \; |X( {f = 1\;{\rm{kHz}}} )| \hspace{0.15 cm}\underline{= 2 \;{\rm{mV/Hz}}}{\rm{.}}$$


(2)  The spectrum  ${Y(f)}$  can be determined from  ${X(f)}$  by applying the  "Integration Theorem".

  • Because of  ${X(f = 0)} = 0$  the Dirac function does not have to be taken into account at the frequency  $f = 0$  and one obtains:
$$Y( f ) = \frac{X( f )}{{{\rm{j}} \cdot 2{\rm{\pi }}fT}} = \frac{{ - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{j}}\cdot 2{\rm{\pi }}fT}} = 2{\rm{j}} \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.$$
  • At frequency  $f = 0$  The signal  ${y(t)}$  also has no spectral components  ⇒   ${Y(f = 0)} \;\underline{= 0}$.
  • For  $f = 1\,\text{kHz} \ \ (f \cdot T = 0.5)$  one obtains a value smaller by a factor  $\pi$  compared to  $X(f)$:
$$|Y( {f = 1\;{\rm{kHz}}} )| = \frac{4 \cdot A \cdot T}{\rm{\pi }} \hspace{0.15 cm}\underline{= {\rm{0}}{\rm{.636}} \;{\rm{mV/Hz}}}{\rm{.}}$$