Difference between revisions of "Aufgaben:Exercise 4.3Z: Hilbert Transformator"

From LNTwww
 
(24 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Analytisches Signal und zugehörige Spektralfunktion
+
{{quiz-Header|Buchseite=Signal_Representation/Analytical_Signal_and_Its_Spectral_Function
 
}}
 
}}
  
[[File:P_ID717__Sig_Z_4_3_neu.png|right|Hilbert-Transformator ]]
+
[[File:P_ID717__Sig_Z_4_3_neu.png|right|frame|Hilbert transformator ]]
Die Grafik beschreibt ein Modell, wie – zumindest gedanklich – aus dem reellen BP–Signal $x(t)$ das analytische Signal $x_{+}(t)$ generiert werden kann. Der untere Zweig enthält den so genannten Hilbert–Transformator mit dem Frequenzgang $H_{\rm HT}(f)$. Dessen Ausgangssignal $y(t)$ wird mit der imaginären Einheit $\rm j$ multipliziert und zum Signal $x(t)$ addiert:
+
The diagram describes a model of how, at least mentally,
 +
*the analytical signal  $x_{+}(t)$  can be generated,
 +
*from the real band-pass signal  $x(t)$.  
 +
 +
 
 +
The lower branch contains the so-called  "Hilbert transformer"  with the frequency response  $H_{\rm HT}(f)$. 
 +
 
 +
Its output signal  $y(t)$   is multiplied by the imaginary unit  $\rm j$  and added to the signal  $x(t)$ :
 
:$$x_{\rm +}(t)= x(t) + {\rm j}\cdot y(t)  .$$
 
:$$x_{\rm +}(t)= x(t) + {\rm j}\cdot y(t)  .$$
Als Testsignale werden verwendet, jeweils mit $A = 1 \ \text{V}$ und $f_0 = 10 \ \text{kHz}$:
+
As test signals are used, each with  $A = 1 \, \text{V}$  and  $f_0 = 10 \, \text{kHz}$:
 
:$$x_1(t) = A \cdot  {\cos} ( 2 \pi f_0 t ),$$
 
:$$x_1(t) = A \cdot  {\cos} ( 2 \pi f_0 t ),$$
 
:$$x_2(t) = A \cdot  {\sin} ( 2 \pi f_0 t ),$$
 
:$$x_2(t) = A \cdot  {\sin} ( 2 \pi f_0 t ),$$
:$$x_3(t) = A \cdot  {\cos} ( 2 \pi f_0 (t - \tau) ) \hspace{0.3cm}{\rm mit}\hspace{0.3cm}\tau = 12.5 \hspace{0.1cm}{\rm \mu s}.$$
+
:$$x_3(t) = A \cdot  {\cos} \big( 2 \pi f_0 (t - \tau) \big) \hspace{0.3cm}{\rm with}\hspace{0.3cm}\tau = 12.5 \hspace{0.1cm}{\rm µ s}.$$
 +
 
 +
 
 +
 
 +
 
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Analytisches_Signal_und_zugehörige_Spektralfunktion|Analytisches Signal und zugehörige Spektralfunktion]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
*Für die Spektralfunktion des analytischen Signals gilt:  
+
*The following applies to the spectral function of the analytical signal:
:$$ X_{\rm +}(f)= \left[1 + {\rm sign}(f)\right] \cdot  X(f).$$
+
:$$ X_{\rm +}(f)= \big[1 + {\rm sign}(f)\big] \cdot  X(f).$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie den Frequenzgang $H_{HT}(f)$ des Hilbert-Transformators. Welcher Wert gilt für die Frequenz $f_0 = 10 \text{kHz}$?
+
{Calculate the frequency response&nbsp; $H_{\rm HT}(f)$&nbsp; of the Hilbert transformer.&nbsp; Which value is valid for the frequency&nbsp; $f_0 = 10 \text{ kHz}$?
 
|type="{}"}
 
|type="{}"}
$\text{Re}[H_{HT}(f = f_0)]$ = { 0 3% }
+
$\text{Re}[H_{\rm HT}(f = f_0)]\ = \ $ { 0. }
$\text{Im}[H_{HT}(f = f_0)]$ = $-$ { 1 3% }
+
$\text{Im}[H_{\rm HT}(f = f_0)]\ = \ $ { -1.03--0.97 }
  
  
{Wie lautet die Hilbert-Transformierte $y_1(t)$ für das Eingangssignal $x_1(t)$? Welcher Wert ergibt sich insbesondere bei $t = 0$?
+
{What is the Hilbert transform&nbsp; $y_1(t)$&nbsp; for the input signal&nbsp; $x_1(t)$?&nbsp; In particular, what value results at&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
$y_1(t = 0)$ = { 0 3% } $V$
+
$y_1(t = 0)\ = \ $ { 0. } &nbsp;$\rm V$
  
  
{Wie lautet die Hilbert-Transformierte $y_2(t)$ für das Eingangssignal $x_2(t)$? Welcher Wert ergibt sich insbesondere bei $t = 0$?
+
{What is the Hilbert transform&nbsp; $y_2(t)$&nbsp; for the input signal&nbsp; $x_2(t)$?&nbsp; Which value results in particular at&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
$y_2(t = 0)$ = $-$ { 1 3% } $V$
+
$y_2(t = 0)\ = \ $ { -1.03--0.97 } &nbsp;$\rm V$
  
  
{Wie lautet die Hilbert-Transformierte $y_3(t)$ für das Eingangssignal $x_3(t)$? Wie groß ist die Phasenverzögerung $\varphi_{HT}$ des Hilbert-Transformators?
+
{What is the Hilbert transform&nbsp; $y_3(t)$&nbsp; for the input signal&nbsp; $x_3(t)$?&nbsp; What value results for&nbsp; $t=0$?&nbsp; What is the phase delay&nbsp; $\varphi_{\rm HT}$&nbsp; of the Hilbert transformer?
 
|type="{}"}
 
|type="{}"}
$\varphi_{HT}$ = { 90 3% } $\text{Grad}$
+
$\varphi_{\rm HT}\ = \ $ { 90 3% } &nbsp;$\text{Grad}$
$y_3(t = 0)$ = $-$ { 0.707 3% } $V$
+
$y_3(t = 0)\ = \ $ { -0.717--0.697 } &nbsp;$\text{V}$
  
  
{Wie lautet das zu $x_3(t)$ gehörige analytische Signal? Welchen Wert haben Real– und Imaginärteil dieses komplexen Signals zum Zeitpunkt $t = 0$?
+
{What is the analytical signal associated with&nbsp; $x_3(t)$?&nbsp; What are the values of the real and imaginary parts of this complex signal at time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
$\text{Re}[x_{3+}(t = 0)]$ = { 0.707 3% } $\text{V}$
+
$\text{Re}[x_{3+}(t = 0)]\ = \ $ { 0.707 3% } &nbsp;$\text{V}$
$\text{Im}[x_{3+}(t = 0)]$ = $-$ { 0.707 3% } $\text{V}$
+
$\text{Im}[x_{3+}(t = 0)]\ = \ $ { -0.717--0.697 } &nbsp;$\text{V}$
  
  
Line 52: Line 63:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Für die Spektralfunktion am Modellausgang gilt:
+
'''(1)'''&nbsp; For the spectral function at the model output holds:
 
:$$X_{\rm +}(f)= \left(1 + {\rm j}\cdot H_{\rm HT}(f)\right) \cdot
 
:$$X_{\rm +}(f)= \left(1 + {\rm j}\cdot H_{\rm HT}(f)\right) \cdot
 
  X(f).$$
 
  X(f).$$
Ein Vergleich mit der angegebenen Beziehung
+
*A comparison with the given relation
 
:$$X_{\rm +}(f)= \left(1 + {\rm
 
:$$X_{\rm +}(f)= \left(1 + {\rm
 
sign}(f)\right) \cdot  X(f)$$
 
sign}(f)\right) \cdot  X(f)$$
zeigt, dass $H_{HT}(f) = j \cdot sign(f)$ ist. Der gesuchte <u>Realteil ist somit $0$, der Imaginärteil gleich $–1$</u>.
+
:shows that&nbsp; $H_{\rm HT}(f) = - {\rm j} \cdot \sign(f)$.  
  
'''2.'''  Aus der Spektralfunktion
+
*Thus, the real part we are looking for is&nbsp; ${\rm Re}[X_{\rm +}(f)]\hspace{0.15cm}\underline{=0}$&nbsp; and the imaginary part is equal to&nbsp; ${\rm Im}[X_{\rm +}(f)]\hspace{0.15cm}\underline{=-1}$.
:$$X_1(f) = \frac{A}{2}\cdot\delta (f + f_{0})+
+
 
\frac{A}{2}\cdot\delta (f - f_{0}).$$
+
 
wird nach dem Hilbert-Transformator:
+
 
:$$Y_1(f) = {\rm j}\cdot\frac{A}{2}\cdot\delta (f + f_{0})-{\rm
+
'''(2)'''&nbsp; From the spectral function
j}\cdot \frac{A}{2}\cdot\delta (f - f_{0}).$$
+
:$$X_1(f) = {A}/{2}\cdot\delta (f + f_{0})+
Damit lautet das Signal am Ausgang des Hilbert-Transformators:
+
{A}/{2}\cdot\delta (f - f_{0}).$$
 +
:becomes according to the Hilbert transformer:
 +
:$$Y_1(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm
 +
j}\cdot {A}/{2}\cdot\delta (f - f_{0}).$$
 +
*Thus the signal at the output of the Hilbert transformer is:
 
:$$y_1(t) = A \cdot  {\sin} ( 2 \pi f_0 t ) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}y_1(t=0)\hspace{0.15 cm}\underline{ =0}.$$
 
:$$y_1(t) = A \cdot  {\sin} ( 2 \pi f_0 t ) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}y_1(t=0)\hspace{0.15 cm}\underline{ =0}.$$
  
'''3.'''  Nun lauten die Spektralfunktionen am Eingang und Ausgang des Hilbert-Transformators:
 
:$$X_2(f) = {\rm j}\cdot\frac{A}{2}\cdot\delta (f + f_{0})-{\rm
 
j}\cdot \frac{A}{2}\cdot\delta (f - f_{0}),$$
 
:$$Y_2(f) = -\frac{A}{2}\cdot\delta (f + f_{0})-
 
\frac{A}{2}\cdot\delta (f - f_{0}).$$
 
Daraus folgt $y_2(t) = – A \cdot cos(2\pi f_0 t)$ und $y_2(t = 0) \underline{= –1 V}$.
 
  
'''4.'''  Dieses Eingangssignal lässt sich auch wie folgt darstellen:
+
 
 +
'''(3)'''&nbsp;  Now the spectral functions at the input and output of the Hilbert transformer are:
 +
:$$X_2(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm
 +
j}\cdot {A}/{2}\cdot\delta (f - f_{0}),$$
 +
:$$Y_2(f) = -{A}/{2}\cdot\delta (f + f_{0})-
 +
{A}/{2}\cdot\delta (f - f_{0}).$$
 +
*It follows that&nbsp; $y_2(t) = - A \cdot \cos(2\pi f_0 t)$&nbsp; and&nbsp; $y_2(t = 0)\;  \underline{= -\hspace{-0.08cm}1 \,\text{V}}$.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; This input signal can also be represented as follows:
 
:$$x_3(t) = A \cdot  {\cos} ( 2 \pi f_0 t -
 
:$$x_3(t) = A \cdot  {\cos} ( 2 \pi f_0 t -
 
  2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot {\rm 0.0125 \hspace{0.05cm} ms}) =
 
  2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot {\rm 0.0125 \hspace{0.05cm} ms}) =
A \cdot  {\cos} ( 2 \pi f_0 t - \pi/4).$$
+
A \cdot  {\cos} ( 2 \pi f_0 t - \pi/4)\hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm}y_3(t) = A \cdot  {\cos} ( 2 \pi f_0 t - 3\pi/4).$$
+
\Rightarrow \hspace{0.3cm}y_3(t) = A \cdot  {\cos} ( 2 \pi f_0 t - 3\pi/4).$$
Die Signalphase ist somit $\varphi = \pi /4$. Durch den Hilbert-Transformator wird diese um $\varphi_{HT} = 90° (\pi /2)$ verzögert. Deshalb ist das Ausgangssignal $y_3(t) = A \cdot cos(2\pi f_0 t 3 \pi /4)$ und der Signalwert zur Zeit $t = 0$ beträgt $A \cdot cos(135°) \underline{= –0.707 V}$.
+
*The signal phase is thus&nbsp; $\varphi = \pi /4$.  
 +
*The Hilbert transformer delays this by&nbsp; $\varphi_{\rm HT} \;  \underline{= 90^\circ} \; (\pi /2)$.  
 +
*Therefore, the output signal&nbsp; $y_3(t) = A \cdot \cos(2\pi f_0 t -3 \pi /4)$&nbsp; and the signal value at time&nbsp; $t = 0$&nbsp; is&nbsp; $A \cdot \cos(135^\circ) \; \underline{= -0.707 \,\text{V}}$.
  
'''5.'''  Die Spektralfunktion des Signals $x_3(t)$ lautet:
+
 
:$$X_3(f) = \frac{A_0}{2} \cdot {\rm e}^{{\rm j} \varphi}\cdot\delta
+
 
(f + f_{\rm 0}) + \frac{A_0}{2} \cdot {\rm e}^{-{\rm j}
+
'''(5)'''&nbsp; The spectral function of the signal&nbsp; $x_3(t)$&nbsp; is:
 +
:$$X_3(f) = {A_0}/{2} \cdot {\rm e}^{{\rm j} \varphi}\cdot\delta
 +
(f + f_{\rm 0}) + {A_0}/{2} \cdot {\rm e}^{-{\rm j}
 
\varphi}\cdot\delta (f - f_{\rm 0})  .$$
 
\varphi}\cdot\delta (f - f_{\rm 0})  .$$
Beim analytischen Signal verschwindet der erste Anteil und der Anteil bei $+f_0$ wird verdoppelt:
+
*For the analytical signal, the first component disappears and the component at&nbsp; $+f_0$&nbsp; is doubled:
 +
 
 
:$$X_{3+}(f) =  {A_0} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f
 
:$$X_{3+}(f) =  {A_0} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f
 
- f_{\rm 0})  .$$
 
- f_{\rm 0})  .$$
Durch Anwendung des Verschiebungssatzes lautet damit die zugehörige Zeitfunktion mit $\varphi = \pi /4$:
+
*By applying the&nbsp; "Shifting Theorem"&nbsp;, the associated time function with&nbsp; $\varphi = \pi /4$ is:
 
:$$x_{3+}(t) = A_0 \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t
 
:$$x_{3+}(t) = A_0 \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
Speziell gilt für den Zeitpunkt $t = 0$:
+
*Specifically, for time&nbsp; $t = 0$:
 
:$$x_{3+}(t = 0) = A_0 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}
 
:$$x_{3+}(t = 0) = A_0 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}
 
\varphi} = A_0 \cdot{\cos} ( 45^\circ)-{\rm j}\cdot A_0  
 
\varphi} = A_0 \cdot{\cos} ( 45^\circ)-{\rm j}\cdot A_0  
 
\cdot{\sin} ( 45^\circ)= \hspace{0.15 cm}\underline{{\rm 0.707 \hspace{0.05cm} V}-{\rm
 
\cdot{\sin} ( 45^\circ)= \hspace{0.15 cm}\underline{{\rm 0.707 \hspace{0.05cm} V}-{\rm
 
j}\cdot {\rm 0.707 \hspace{0.05cm} V}}.$$
 
j}\cdot {\rm 0.707 \hspace{0.05cm} V}}.$$
''Hinweis'': Um von $x(t)$ zu $x_+(t)$ zu kommen, muss man nur die Cosinusfunktion durch die komplexe Exponentialfunktion ersetzen. Beispielsweise gilt für eine harmonische Schwingung:
+
 
 +
 
 +
''Hint'': &nbsp;
 +
*To get from&nbsp; $x(t)$&nbsp; to&nbsp; $x_+(t)$,&nbsp; just replace the cosine function with the complex exponential function.
 +
*For example, the following applies to a harmonic oscillation:
 
:$$x(t) = A \cdot  {\cos} ( 2 \pi f_0 t  
 
:$$x(t) = A \cdot  {\cos} ( 2 \pi f_0 t  
 
-\hspace{0.05cm} \varphi) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  x_{+}(t) = A \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t
 
-\hspace{0.05cm} \varphi) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  x_{+}(t) = A \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t
Line 108: Line 137:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^4.2 Analytical Signal and its Spectral Function^]]

Latest revision as of 15:13, 24 May 2021

Hilbert transformator

The diagram describes a model of how, at least mentally,

  • the analytical signal  $x_{+}(t)$  can be generated,
  • from the real band-pass signal  $x(t)$.


The lower branch contains the so-called  "Hilbert transformer"  with the frequency response  $H_{\rm HT}(f)$. 

Its output signal  $y(t)$  is multiplied by the imaginary unit  $\rm j$  and added to the signal  $x(t)$ :

$$x_{\rm +}(t)= x(t) + {\rm j}\cdot y(t) .$$

As test signals are used, each with  $A = 1 \, \text{V}$  and  $f_0 = 10 \, \text{kHz}$:

$$x_1(t) = A \cdot {\cos} ( 2 \pi f_0 t ),$$
$$x_2(t) = A \cdot {\sin} ( 2 \pi f_0 t ),$$
$$x_3(t) = A \cdot {\cos} \big( 2 \pi f_0 (t - \tau) \big) \hspace{0.3cm}{\rm with}\hspace{0.3cm}\tau = 12.5 \hspace{0.1cm}{\rm µ s}.$$



Hints:

  • The following applies to the spectral function of the analytical signal:
$$ X_{\rm +}(f)= \big[1 + {\rm sign}(f)\big] \cdot X(f).$$


Questions

1

Calculate the frequency response  $H_{\rm HT}(f)$  of the Hilbert transformer.  Which value is valid for the frequency  $f_0 = 10 \text{ kHz}$?

$\text{Re}[H_{\rm HT}(f = f_0)]\ = \ $

$\text{Im}[H_{\rm HT}(f = f_0)]\ = \ $

2

What is the Hilbert transform  $y_1(t)$  for the input signal  $x_1(t)$?  In particular, what value results at  $t = 0$?

$y_1(t = 0)\ = \ $

 $\rm V$

3

What is the Hilbert transform  $y_2(t)$  for the input signal  $x_2(t)$?  Which value results in particular at  $t = 0$?

$y_2(t = 0)\ = \ $

 $\rm V$

4

What is the Hilbert transform  $y_3(t)$  for the input signal  $x_3(t)$?  What value results for  $t=0$?  What is the phase delay  $\varphi_{\rm HT}$  of the Hilbert transformer?

$\varphi_{\rm HT}\ = \ $

 $\text{Grad}$
$y_3(t = 0)\ = \ $

 $\text{V}$

5

What is the analytical signal associated with  $x_3(t)$?  What are the values of the real and imaginary parts of this complex signal at time  $t = 0$?

$\text{Re}[x_{3+}(t = 0)]\ = \ $

 $\text{V}$
$\text{Im}[x_{3+}(t = 0)]\ = \ $

 $\text{V}$


Solution

(1)  For the spectral function at the model output holds:

$$X_{\rm +}(f)= \left(1 + {\rm j}\cdot H_{\rm HT}(f)\right) \cdot X(f).$$
  • A comparison with the given relation
$$X_{\rm +}(f)= \left(1 + {\rm sign}(f)\right) \cdot X(f)$$
shows that  $H_{\rm HT}(f) = - {\rm j} \cdot \sign(f)$.
  • Thus, the real part we are looking for is  ${\rm Re}[X_{\rm +}(f)]\hspace{0.15cm}\underline{=0}$  and the imaginary part is equal to  ${\rm Im}[X_{\rm +}(f)]\hspace{0.15cm}\underline{=-1}$.


(2)  From the spectral function

$$X_1(f) = {A}/{2}\cdot\delta (f + f_{0})+ {A}/{2}\cdot\delta (f - f_{0}).$$
becomes according to the Hilbert transformer:
$$Y_1(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm j}\cdot {A}/{2}\cdot\delta (f - f_{0}).$$
  • Thus the signal at the output of the Hilbert transformer is:
$$y_1(t) = A \cdot {\sin} ( 2 \pi f_0 t ) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}y_1(t=0)\hspace{0.15 cm}\underline{ =0}.$$


(3)  Now the spectral functions at the input and output of the Hilbert transformer are:

$$X_2(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm j}\cdot {A}/{2}\cdot\delta (f - f_{0}),$$
$$Y_2(f) = -{A}/{2}\cdot\delta (f + f_{0})- {A}/{2}\cdot\delta (f - f_{0}).$$
  • It follows that  $y_2(t) = - A \cdot \cos(2\pi f_0 t)$  and  $y_2(t = 0)\; \underline{= -\hspace{-0.08cm}1 \,\text{V}}$.



(4)  This input signal can also be represented as follows:

$$x_3(t) = A \cdot {\cos} ( 2 \pi f_0 t - 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot {\rm 0.0125 \hspace{0.05cm} ms}) = A \cdot {\cos} ( 2 \pi f_0 t - \pi/4)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_3(t) = A \cdot {\cos} ( 2 \pi f_0 t - 3\pi/4).$$
  • The signal phase is thus  $\varphi = \pi /4$.
  • The Hilbert transformer delays this by  $\varphi_{\rm HT} \; \underline{= 90^\circ} \; (\pi /2)$.
  • Therefore, the output signal  $y_3(t) = A \cdot \cos(2\pi f_0 t -3 \pi /4)$  and the signal value at time  $t = 0$  is  $A \cdot \cos(135^\circ) \; \underline{= -0.707 \,\text{V}}$.


(5)  The spectral function of the signal  $x_3(t)$  is:

$$X_3(f) = {A_0}/{2} \cdot {\rm e}^{{\rm j} \varphi}\cdot\delta (f + f_{\rm 0}) + {A_0}/{2} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f - f_{\rm 0}) .$$
  • For the analytical signal, the first component disappears and the component at  $+f_0$  is doubled:
$$X_{3+}(f) = {A_0} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f - f_{\rm 0}) .$$
  • By applying the  "Shifting Theorem" , the associated time function with  $\varphi = \pi /4$ is:
$$x_{3+}(t) = A_0 \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
  • Specifically, for time  $t = 0$:
$$x_{3+}(t = 0) = A_0 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \varphi} = A_0 \cdot{\cos} ( 45^\circ)-{\rm j}\cdot A_0 \cdot{\sin} ( 45^\circ)= \hspace{0.15 cm}\underline{{\rm 0.707 \hspace{0.05cm} V}-{\rm j}\cdot {\rm 0.707 \hspace{0.05cm} V}}.$$


Hint:  

  • To get from  $x(t)$  to  $x_+(t)$,  just replace the cosine function with the complex exponential function.
  • For example, the following applies to a harmonic oscillation:
$$x(t) = A \cdot {\cos} ( 2 \pi f_0 t -\hspace{0.05cm} \varphi) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{+}(t) = A \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$