Difference between revisions of "Aufgaben:Exercise 2.3: Yet Another Multi-Path Channel"

From LNTwww
m (Text replacement - "Dirac impulse" to "Dirac delta")
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Mehrwegeempfang beim Mobilfunk}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Multipath_Reception_in_Mobile_Communications}}
  
 
[[File:P_ID2160__Mob_A_2_3.png|right|frame|Given piecewise constant impulse response]]
 
[[File:P_ID2160__Mob_A_2_3.png|right|frame|Given piecewise constant impulse response]]
 
We consider a multipath channel, which is characterized by the following impulse response:
 
We consider a multipath channel, which is characterized by the following impulse response:
$$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m)  
+
:$$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m)  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
All coefficients  $k_{m}$  are real (positive or negative). Furthermore, we note
+
All coefficients  $k_{m}$  are real (positive or negative).  Furthermore, we note:
* From the specification  $h(\tau, \hspace{0.05cm}t) = h(\tau)$  you can see that the channel is time invariant.
+
* From the specification  $h(\tau, \hspace{0.05cm}t) = h(\tau)$  you can see that the channel is time–invariant.
* Generally, the channel has $M$ paths. The  value of $M$ should be determined from the graph.
+
* Generally, the channel has  $M$  paths.  The value of  $M$  should be determined from the graph.
* The following relations apply to the delay times:&nbsp; $\tau_1 < \tau_2 < \tau_3 < \ \ text{...}$
+
* The following relations apply to the delay times:&nbsp; $\tau_1 < \tau_2 < \tau_3 < \ \text{...}$.
  
  
The graph shows the output signal&nbsp; $r(\tau)$&nbsp; of the channel when the following transmit signal is present at the input (shown in the equivalent low-pass range):
+
The graph shows the output signal&nbsp; $r(\tau)$&nbsp; of the channel when the following transmitted signal is present at the input&nbsp; (shown in the equivalent low-pass range):
 
:$$s(\tau) = \left\{ \begin{array}{c} s_0\\
 
:$$s(\tau) = \left\{ \begin{array}{c} s_0\\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
Line 24: Line 24:
  
 
''Notes:''
 
''Notes:''
* This task refers to the chapter&nbsp; [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
+
* This task refers to the chapter&nbsp; [[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications| Multi&ndash;Path Reception in Mobile Communications]].
* For the solution of subtask '''(1)''' assume that the impulse response&nbsp; $h(\tau)$&nbsp; has a span of 5 microseconds.
+
* For the solution of subtask&nbsp; '''(1)'''&nbsp; assume that the impulse response&nbsp; $h(\tau)$&nbsp; has a span of five microseconds.
 
   
 
   
  
Line 32: Line 32:
 
===Questionnaire===
 
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{What is the impulse response&nbsp; $h(\tau)$? How many paths&nbsp; $(M)$&nbsp; are there?
+
{What is the impulse response&nbsp; $h(\tau)$?&nbsp; How many paths&nbsp; $(M)$&nbsp; are there?
 
|type="{}"}
 
|type="{}"}
 
$M \ = \ ${ 3 }
 
$M \ = \ ${ 3 }
  
{Specify the first three delays&nbsp; $\tau_m$&nbsp;.
+
{Specify the first three delays&nbsp; $\tau_m$.
 
|type="{}"}
 
|type="{}"}
 
$\tau_1 \ = \ ${ 0. } $\ \ \rm &micro; s$
 
$\tau_1 \ = \ ${ 0. } $\ \ \rm &micro; s$
Line 42: Line 42:
 
$\tau_3 \ = \ ${ 10 3% } $\ \ \rm &micro; s$
 
$\tau_3 \ = \ ${ 10 3% } $\ \ \rm &micro; s$
  
{What are the weights of the first three Dirac impulses?
+
{What are the weights of the first three Dirac deltas?
 
|type="{}"}
 
|type="{}"}
 
$k_1 \ = \ ${ 0.75 3% }  
 
$k_1 \ = \ ${ 0.75 3% }  
Line 48: Line 48:
 
$k_3 \ = \ ${ 0.25 3% }  
 
$k_3 \ = \ ${ 0.25 3% }  
  
{Calculate the frequency response&nbsp; $H(f)$. What is the frequency period&nbsp; $f_0$? <br><i>Note:</i> &nbsp; With integer&nbsp; $i$, it must hold that &nbsp; $H(f + i \cdot f_0) = H(f)$&nbsp;.
+
{Calculate the frequency response&nbsp; $H(f)$.&nbsp; What is the frequency period&nbsp; $f_0$? <br><i> &nbsp; &nbsp;Note:</i> &nbsp; With integer&nbsp; $i$, it must hold that &nbsp; $H(f + i \cdot f_0) = H(f)$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$f_0 \ = \ ${ 500 3% } $\ \ \rm kHz$
 
$f_0 \ = \ ${ 500 3% } $\ \ \rm kHz$
  
{Calculate the magnitude of the frequency response. Which values result for the frequencies&nbsp; $f = 0$,&nbsp; $f = 250 \ \rm kHz$&nbsp; and&nbsp; $f = 500 \ \rm kHz$?
+
{Calculate the magnitude of the frequency response.&nbsp; Which values result for the frequencies&nbsp; $f = 0$,&nbsp; $f = 250 \ \rm kHz$&nbsp; and&nbsp; $f = 500 \ \rm kHz$?
 
|type="{}"}
 
|type="{}"}
 
$|H(f = 0)| \ = \ ${ 0.5 3% }  
 
$|H(f = 0)| \ = \ ${ 0.5 3% }  
Line 58: Line 58:
 
$|H(f = 500 \ \rm kHz)| \ = \ ${ 0.5 3% }  
 
$|H(f = 500 \ \rm kHz)| \ = \ ${ 0.5 3% }  
  
{What is the worst value&nbsp; $({\rm worst \ case})$&nbsp; for&nbsp; $k_3$&nbsp; at frequency&nbsp; $f = 250 \ \rm kHz$?
+
{What is the worst value&nbsp; $({\rm worst \ case})$&nbsp; for&nbsp; $k_3$&nbsp; at frequency&nbsp; $f = 250 \ \rm kHz$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$k_3 \ = \ ${ 1.25 3% }
 
$k_3 \ = \ ${ 1.25 3% }
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Here we have $r(\tau) = s(\tau) &#8727; h(\tau)$, where $s(\tau)$ denotes a rectangular pulse of duration $T = 5 \ \ \rm &micro; s$ and the impulse response $h(\tau)$ is made up of $M$ weighted Dirac functions at $\tau_1, \tau_2, \ \text{...} \ , \tau_M$  
+
'''(1)'''&nbsp; Here we have&nbsp; $r(\tau) = s(\tau) &#8727; h(\tau)$, where&nbsp; $s(\tau)$&nbsp; denotes a rectangular pulse of duration&nbsp; $T = 5 \ \ \rm &micro; s$&nbsp; and the impulse response&nbsp; $h(\tau)$&nbsp; is made up of&nbsp; $M$&nbsp; weighted Dirac functions at&nbsp; $\tau_1, \tau_2, \ \text{...} \ , \tau_M$.
  
The sketched output signal $r(\tau)$ can only result if
+
The sketched output signal&nbsp; $r(\tau)$&nbsp; can only result if
* $\tau_1 = 0$ (otherwise $r(\tau)$ would not start at $\tau = 0$),
+
* $\tau_1 = 0$&nbsp; $($otherwise $r(\tau)$&nbsp; would not start at $\tau = 0)$,
* $\tau_M = 10 \ \rm &micro; s$ is (this results in the rectangular section between $10 \ \rm &micro; s$ and $15 \ \ \rm &micro; s$),
+
* $\tau_M = 10 \ \rm &micro; s$&nbsp; $($this results in the rectangular section between&nbsp; $10 \ \rm &micro; s$ and $15 \ \ \rm &micro; s)$,
* there is another Dirac function at $\tau_2 = 2 \ \rm &micro; s$ between the two.
+
* there is another Dirac function at&nbsp; $\tau_2 = 2 \ \rm &micro; s$&nbsp; between the two.
  
  
That means: &nbsp; The impulse response here consists of $\underline {M = 3}$ Dirac functions.
+
That means: &nbsp; The impulse response here consists of&nbsp; $\underline {M = 3}$&nbsp; Dirac functions.
  
  
Line 80: Line 80:
  
  
'''(3)'''&nbsp; If you compare input $s(\tau)$ and output $r(\tau)$, you will get the following results:
+
'''(3)'''&nbsp; If you compare input&nbsp; $s(\tau)$&nbsp; and output&nbsp; $r(\tau)$, you will get the following results:
* Interval $0 < \tau < 2 \ {\rm &micro; s} \text{:} \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$,
+
* Interval&nbsp; $0 < \tau < 2 \ {\rm &micro; s} \text{:} \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$,
* Interval $2 \ {\rm &micro; s} < \tau < 5 \ {\rm &micro; s} \text{:} \, \hspace{2.4cm} r(\tau) =(k_1 + k_2) \cdot s_0 = 0.25 \cdot s_0 \Rightarrow k_2 \ \underline {= \, &ndash;0.50}$,
+
* Interval&nbsp; $2 \ {\rm &micro; s} < \tau < 5 \ {\rm &micro; s} \text{:} \, \hspace{2.45cm} r(\tau) =(k_1 + k_2) \cdot s_0 = 0.25 \cdot s_0 \Rightarrow k_2 \ \underline {= \, -0.50}$,
* Interval $10 \ {\rm &micro; s} < \tau < 15 \ {\rm &micro; s} \text{:} \, \hspace{1.95cm} r(\tau) =k_3 \cdot s_0 = 0.25 \cdot s_0 \,\Rightarrow\, k_3 \ \underline {= 0.25}$.
+
* Interval&nbsp; $10 \ {\rm &micro; s} < \tau < 15 \ {\rm &micro; s} \text{:} \, \hspace{1.99cm} r(\tau) =k_3 \cdot s_0 = 0.25 \cdot s_0 \,\Rightarrow\, k_3 \ \underline {= 0.25}$.
  
'''(4)'''&nbsp; Using the time-shifting property, the Fourier transform of the impulse response $h(\tau)$ is:
+
 
 +
 
 +
'''(4)'''&nbsp; Using the time&ndash;shifting property, the Fourier transform of the impulse response&nbsp; $h(\tau)$&nbsp; is:
 
:$$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm}
 
:$$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+  k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3}
 
\Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+  k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3}
Line 91: Line 93:
  
 
Analysis of the individual contributions leads to the following conclusion:
 
Analysis of the individual contributions leads to the following conclusion:
* The first part is constant (any period is valid).
+
* The first part is constant &nbsp; &#8658; &nbsp; periode&nbsp; $f_1 &#8594; &#8734;$..
 
* The second part is periodic with $f_2 = 1/\tau_2 = 500 \ \rm kHz$.
 
* The second part is periodic with $f_2 = 1/\tau_2 = 500 \ \rm kHz$.
 
* The third part is periodic with $f_3 = 1/\tau_3 = 100 \ \rm kHz$.
 
* The third part is periodic with $f_3 = 1/\tau_3 = 100 \ \rm kHz$.
  
  
&#8658; $H(f)$ is thus periodic with $f_0 \ \underline {= 500 \ \ \rm kHz}$.
+
&#8658; &nbsp; $H(f)$&nbsp; is thus periodic with&nbsp; $f_0 \ \underline {= 500 \ \ \rm kHz}$.
  
  
'''(5)'''&nbsp; With $A = 2\pi f \cdot \tau_2$ and $B = 2\pi f \cdot \tau_3$ you get
+
'''(5)'''&nbsp; With&nbsp; $A = 2\pi f \cdot \tau_2$&nbsp; and&nbsp; $B = 2\pi f \cdot \tau_3$&nbsp; you get
 
:$$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)=
 
:$$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)=
 
  \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ]  
 
  \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ]  
Line 109: Line 111:
 
\frac {3}{16} \cdot \left [  {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [  {\rm e}^{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$$
 
\frac {3}{16} \cdot \left [  {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [  {\rm e}^{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$$
  
Using [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Euler's theorem]], with consideration of the frequency periodicity, this results in
+
Using&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_Amplidute_and_Phase|Euler's theorem]], with consideration of the frequency periodicity, this results in
 
:$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) +
 
:$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) +
 
\frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$
 
\frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$
Line 118: Line 120:
  
  
'''(6)'''&nbsp; At $f = 250 \ \rm kHz$, the frequency response is
+
'''(6)'''&nbsp; At&nbsp; $f = 250 \ \rm kHz$, the frequency response is
 
[[File:P_ID2162__Mob_A_2_3e.png|right|frame|Amplitude frequency response for three-way channel]]
 
[[File:P_ID2162__Mob_A_2_3e.png|right|frame|Amplitude frequency response for three-way channel]]
$$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3
+
:$$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
 
If you now substitute &nbsp;  
 
If you now substitute &nbsp;  
 
:$$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$  
 
:$$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$  
the result is $|H(f = 250 \ \rm kHz)| = 0$ and thus the most unfavorable value for this signal frequency.
+
the result is&nbsp; $|H(f = 250 \ \rm kHz)| = 0$&nbsp; and thus the most unfavorable value for this signal frequency.
  
  
The graph shows $|H(f)|$ in the range between $0$ and $500 \ \rm kHz$:  
+
The graph shows&nbsp; $|H(f)|$&nbsp; in the range between&nbsp; $0$&nbsp; and&nbsp; $500 \ \rm kHz$:  
*The blue curve corresponds to $k_3 = 0.25$ according to the specifications of subtask '''(4)'''.
+
*The blue curve corresponds to&nbsp; $k_3 = 0.25$&nbsp; according to the specifications of task&nbsp; '''(4)'''.
*The red curve corresponds to $k_3 = 1.25$, the most unfavourable value for $f = 250 \ \rm kHz$.
+
*The red curve corresponds to&nbsp; $k_3 = 1.25$, the most unfavourable value for&nbsp; $f = 250 \ \rm kHz$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]]
+
[[Category:Mobile Communications: Exercises|^2.2 Multi-Path Reception in Wireless Systems^]]

Latest revision as of 08:04, 26 May 2021

Given piecewise constant impulse response

We consider a multipath channel, which is characterized by the following impulse response:

$$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m) \hspace{0.05cm}.$$

All coefficients  $k_{m}$  are real (positive or negative).  Furthermore, we note:

  • From the specification  $h(\tau, \hspace{0.05cm}t) = h(\tau)$  you can see that the channel is time–invariant.
  • Generally, the channel has  $M$  paths.  The value of  $M$  should be determined from the graph.
  • The following relations apply to the delay times:  $\tau_1 < \tau_2 < \tau_3 < \ \text{...}$.


The graph shows the output signal  $r(\tau)$  of the channel when the following transmitted signal is present at the input  (shown in the equivalent low-pass range):

$$s(\tau) = \left\{ \begin{array}{c} s_0\\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le \tau < 5\,{\rm µ s}, \\ {\rm otherwise}. \\ \end{array}$$

We want to find the corresponding impulse response  $h(\tau)$  as well as the transfer function  $H(f)$.


Notes:



Questionnaire

1

What is the impulse response  $h(\tau)$?  How many paths  $(M)$  are there?

$M \ = \ $

2

Specify the first three delays  $\tau_m$.

$\tau_1 \ = \ $

$\ \ \rm µ s$
$\tau_2 \ = \ $

$\ \ \rm µ s$
$\tau_3 \ = \ $

$\ \ \rm µ s$

3

What are the weights of the first three Dirac deltas?

$k_1 \ = \ $

$k_2 \ = \ $

$k_3 \ = \ $

4

Calculate the frequency response  $H(f)$.  What is the frequency period  $f_0$?
   Note:   With integer  $i$, it must hold that   $H(f + i \cdot f_0) = H(f)$ .

$f_0 \ = \ $

$\ \ \rm kHz$

5

Calculate the magnitude of the frequency response.  Which values result for the frequencies  $f = 0$,  $f = 250 \ \rm kHz$  and  $f = 500 \ \rm kHz$?

$|H(f = 0)| \ = \ $

$|H(f = 250 \ \rm kHz)| \ = \ $

$|H(f = 500 \ \rm kHz)| \ = \ $

6

What is the worst value  $({\rm worst \ case})$  for  $k_3$  at frequency  $f = 250 \ \rm kHz$ ?

$k_3 \ = \ $


Solution

(1)  Here we have  $r(\tau) = s(\tau) ∗ h(\tau)$, where  $s(\tau)$  denotes a rectangular pulse of duration  $T = 5 \ \ \rm µ s$  and the impulse response  $h(\tau)$  is made up of  $M$  weighted Dirac functions at  $\tau_1, \tau_2, \ \text{...} \ , \tau_M$.

The sketched output signal  $r(\tau)$  can only result if

  • $\tau_1 = 0$  $($otherwise $r(\tau)$  would not start at $\tau = 0)$,
  • $\tau_M = 10 \ \rm µ s$  $($this results in the rectangular section between  $10 \ \rm µ s$ and $15 \ \ \rm µ s)$,
  • there is another Dirac function at  $\tau_2 = 2 \ \rm µ s$  between the two.


That means:   The impulse response here consists of  $\underline {M = 3}$  Dirac functions.


(2)  As already calculated in the first subtask, one gets

$$\tau_1 \hspace{0.1cm} \underline {= 0}\hspace{0.05cm},\hspace{0.2cm}\tau_2 \hspace{0.1cm} \underline {= 2\,{\rm µ s}}\hspace{0.05cm},\hspace{0.2cm}\tau_3 \hspace{0.1cm} \underline {= 10\,{\rm µ s}}\hspace{0.05cm}.$$


(3)  If you compare input  $s(\tau)$  and output  $r(\tau)$, you will get the following results:

  • Interval  $0 < \tau < 2 \ {\rm µ s} \text{:} \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$,
  • Interval  $2 \ {\rm µ s} < \tau < 5 \ {\rm µ s} \text{:} \, \hspace{2.45cm} r(\tau) =(k_1 + k_2) \cdot s_0 = 0.25 \cdot s_0 \Rightarrow k_2 \ \underline {= \, -0.50}$,
  • Interval  $10 \ {\rm µ s} < \tau < 15 \ {\rm µ s} \text{:} \, \hspace{1.99cm} r(\tau) =k_3 \cdot s_0 = 0.25 \cdot s_0 \,\Rightarrow\, k_3 \ \underline {= 0.25}$.


(4)  Using the time–shifting property, the Fourier transform of the impulse response  $h(\tau)$  is:

$$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+ k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3} \hspace{0.05cm}. $$

Analysis of the individual contributions leads to the following conclusion:

  • The first part is constant   ⇒   periode  $f_1 → ∞$..
  • The second part is periodic with $f_2 = 1/\tau_2 = 500 \ \rm kHz$.
  • The third part is periodic with $f_3 = 1/\tau_3 = 100 \ \rm kHz$.


⇒   $H(f)$  is thus periodic with  $f_0 \ \underline {= 500 \ \ \rm kHz}$.


(5)  With  $A = 2\pi f \cdot \tau_2$  and  $B = 2\pi f \cdot \tau_3$  you get

$$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)= \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ] \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{{\rm j}B}\right ]$$
$$\Rightarrow \hspace{0.3cm} |H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {9}{16 }- \frac {3 {\rm e}^{{\rm j}A}}{8} +\frac {3{\rm e}^{{\rm j}B}}{16} - \frac {3{\rm e}^{-{\rm j}A}}{8} +\frac {1}{4}- \frac {{\rm e}^{{\rm j}(B-A)}}{8} +\frac {3{\rm e}^{-{\rm j}B}}{16} - \frac {{\rm e}^{{\rm j}(A-B)}}{8} +\frac{1}{16 }=$$
$$\hspace{2.1cm} \ = \ \hspace{-0.1cm}\frac {7}{8 }- \frac {3}{8} \cdot \left [ {\rm e}^{{\rm j}A} + {\rm e}^{-{\rm j}A}\right ]+ \frac {3}{16} \cdot \left [ {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [ {\rm e}^{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$$

Using  Euler's theorem, with consideration of the frequency periodicity, this results in

$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) + \frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$
$$\Rightarrow \hspace{0.3cm} |H(f = 0)|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac {7}{8 }- \frac {3}{4} + \frac {3}{8} - \frac {1}{4} } = \sqrt{0.25}\hspace{0.1cm} \underline {= 0.5} = |H(f = 500\,{\rm kHz})|$$
$$|H(f = 250\,{\rm kHz})|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( \pi ) + \frac {3}{8} \cdot \cos( 5 \pi )- \frac {1}{4} \cdot \cos( 4 \pi )} \hspace{0.1cm} \underline {= 1}\hspace{0.05cm}.$$


(6)  At  $f = 250 \ \rm kHz$, the frequency response is

Amplitude frequency response for three-way channel
$$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3 \hspace{0.05cm}.$$

If you now substitute  

$$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$

the result is  $|H(f = 250 \ \rm kHz)| = 0$  and thus the most unfavorable value for this signal frequency.


The graph shows  $|H(f)|$  in the range between  $0$  and  $500 \ \rm kHz$:

  • The blue curve corresponds to  $k_3 = 0.25$  according to the specifications of task  (4).
  • The red curve corresponds to  $k_3 = 1.25$, the most unfavourable value for  $f = 250 \ \rm kHz$.