Difference between revisions of "Aufgaben:Exercise 3.7Z: Rectangular Signal with Echo"

From LNTwww
m (Text replacement - "Category:Exercises for Signal Representation" to "Category:Signal Representation: Exercises")
m (Text replacement - "Dirac impulse" to "Dirac delta")
 
(5 intermediate revisions by one other user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:EN_Sig_Z_3_7.png|right|frame|Transmit signal $s(t)$ & signal $r(t)$ with echo]]
+
[[File:EN_Sig_Z_3_7.png|right|frame|Transmission signal&nbsp; $s(t)$, and&nbsp; <br>reception signal&nbsp; $r(t)$&nbsp; with echo]]
We consider a periodic square wave signal&nbsp; $s(t)$&nbsp; with the possible amplitude values&nbsp; $0\text{ V}$&nbsp; and&nbsp; $2\text{ V}$&nbsp; and the period duration&nbsp; $T_0 = T = 1 \text{ ms}$. At the jump points, for example at&nbsp; $t = T/4$, the signal value is&nbsp; $1\text{ V}$. The DC component $($also i.e. the Fourier coefficient&nbsp; $A_0)$&nbsp; of the signal is also&nbsp; $1\text{ V}$.  
+
We consider a periodic rectangular signal&nbsp; $s(t)$&nbsp; with the possible amplitude values&nbsp; $0\text{ V}$&nbsp; and&nbsp; $2\text{ V}$&nbsp; and the period duration&nbsp; $T_0 = T = 1 \text{ ms}$.&nbsp; At the jump points, e.g. at&nbsp; $t = T/4$, the signal value are&nbsp; $1\text{ V}$.&nbsp; The DC component&nbsp; $($i.e. the Fourier coefficient&nbsp; $A_0)$&nbsp; of the signal is&nbsp; $1\text{ V}$, too.  
  
 
Further applies:
 
Further applies:
Line 12: Line 12:
 
* The coefficients&nbsp; $A_n$&nbsp; with even&nbsp; $n$&nbsp; are also zero.
 
* The coefficients&nbsp; $A_n$&nbsp; with even&nbsp; $n$&nbsp; are also zero.
  
* For odd values of&nbsp; $n$&nbsp; on the other hand, the following applies:
+
* For odd values of&nbsp; $n$,&nbsp; the following applies:
 
:$$A_n  = ( { - 1} )^{\left( {n - 1} \right)/2}  \cdot \frac{{4\;{\rm{V}}}}{{n \cdot {\rm{\pi }}}}.$$
 
:$$A_n  = ( { - 1} )^{\left( {n - 1} \right)/2}  \cdot \frac{{4\;{\rm{V}}}}{{n \cdot {\rm{\pi }}}}.$$
  
Line 19: Line 19:
 
*The latter is characterised by the attenuation factor&nbsp; $\alpha$&nbsp; and the transit time&nbsp; $\tau$&nbsp;.
 
*The latter is characterised by the attenuation factor&nbsp; $\alpha$&nbsp; and the transit time&nbsp; $\tau$&nbsp;.
 
*Therefore, the following applies to the received signal:
 
*Therefore, the following applies to the received signal:
$$r(t) = s(t) + \alpha  \cdot s( {t - \tau } ).$$
+
:$$r(t) = s(t) + \alpha  \cdot s( {t - \tau } ).$$
The frequency response of the channel is&nbsp; $H(f) = R(f)/S(f)$, the impulse response is denoted by&nbsp; $h(t)$&nbsp;.
+
The frequency response of the channel is&nbsp; $H(f) = R(f)/S(f)$,&nbsp; the impulse response is denoted by&nbsp; $h(t)$&nbsp;.
  
  
Line 30: Line 30:
  
 
''Hints:''  
 
''Hints:''  
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|The Convolution Theorem and Operation]].
+
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|The Convolution Theorem and Operation]].
*Important information can be found in particular on the page&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_of_a_Function_With_a_Dirac_Function|Convolution of a Function With a Dirac Function]].
+
*Important information can be found on the page&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_of_a_function_with_a_Dirac_function|Convolution of a function with a Dirac function]].
 
   
 
   
  
Line 38: Line 38:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Which statements are true regarding the impulse response&nbsp; $h(t)$&nbsp;?
+
{Which statements are true regarding the impulse response&nbsp; $h(t)$?
 
|type="[]"}
 
|type="[]"}
- For&nbsp; $0 ≤ t < \tau$&nbsp; &nbsp;$h(t) = 1$ is true, for&nbsp; $t  > \tau$&nbsp; &nbsp; $h(t) = 1 + \alpha$.
+
- For&nbsp; $0 ≤ t < \tau$&nbsp; holds &nbsp;$h(t) = 1$, and for&nbsp; $t  > \tau$&nbsp; holds &nbsp; $h(t) = 1 + \alpha$.
 
+ It holds that &nbsp;$h(t) = \delta (t) + \alpha \cdot \delta(t - \tau)$.
 
+ It holds that &nbsp;$h(t) = \delta (t) + \alpha \cdot \delta(t - \tau)$.
- $h(t)$&nbsp; has a gaussian shape.
+
- $h(t)$&nbsp; has a Gaussian shape.
  
  
{Calculate the signal&nbsp; $r(t)$&nbsp; for the channel parameters&nbsp; $\alpha = -0.5$&nbsp; and&nbsp; $\tau = T/4$. <br>What values result at the given times?
+
{Calculate the reception signal&nbsp; $r(t)$&nbsp; for the channel parameters&nbsp; $\alpha = -0.5$&nbsp; and&nbsp; $\tau = T/4$. <br>What values result at the given times?
 
|type="{}"}
 
|type="{}"}
 
$r(t = 0.2 \cdot T)\ = \ $  { 1 3% } &nbsp;$\text{V}$
 
$r(t = 0.2 \cdot T)\ = \ $  { 1 3% } &nbsp;$\text{V}$
Line 51: Line 51:
  
  
{Calculate the signal&nbsp; $r(t)$&nbsp; with&nbsp; $\alpha = 1$&nbsp; and&nbsp; $\tau = T/2$. Interpret the result in the frequency domain. <br>What value results for&nbsp; $t = T/2$?
+
{Calculate the reception signal&nbsp; $r(t)$&nbsp; with&nbsp; $\alpha = 1$&nbsp; and&nbsp; $\tau = T/2$.&nbsp; Interpret the result in the frequency domain. <br>What value results for&nbsp; $t = T/2$?
 
|type="{}"}
 
|type="{}"}
 
$r(t = T/2)\ = \ $ { 2 3% } &nbsp;$\text{V}$
 
$r(t = T/2)\ = \ $ { 2 3% } &nbsp;$\text{V}$
Line 62: Line 62:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp;  The <u>second suggested solution</u> is correct:
 
'''(1)'''&nbsp;  The <u>second suggested solution</u> is correct:
*The impulse response is equal to the received signal&nbsp; $r(t)$, if a single Dirac impulse is present at the input at time&nbsp; $t = 0$&nbsp;:
+
*The impulse response is equal to the received signal&nbsp; $r(t)$, if a single Dirac delta is present at the input at time&nbsp; $t = 0$&nbsp;:
 
:$$h(t) = \delta (t) + \alpha  \cdot \delta( {t - \tau } ).$$
 
:$$h(t) = \delta (t) + \alpha  \cdot \delta( {t - \tau } ).$$
  
  
 
[[File:P_ID532__Sig_Z_3_7_b_neu.png|right|frame|Convolution of square wave signal&nbsp; $s(t)$&nbsp; and impulse response&nbsp; $h(t)$]]
 
[[File:P_ID532__Sig_Z_3_7_b_neu.png|right|frame|Convolution of square wave signal&nbsp; $s(t)$&nbsp; and impulse response&nbsp; $h(t)$]]
'''(2)'''&nbsp; It holds that&nbsp; $r(t) = s(t) ∗ h(t)$. This convolution operation is most easily performed graphically:
+
'''(2)'''&nbsp; It holds&nbsp; $r(t) = s(t) ∗ h(t)$.&nbsp; This convolution operation is most easily performed graphically:
  
 
The values of the received signal are generally:
 
The values of the received signal are generally:
Line 82: Line 82:
  
  
'''(3)'''&nbsp;  Using a similar procedure as in '''(2)''' , a DC signal of $2\hspace{0.02cm}\text{ V}$ is obtained for $r(t)$ :  
+
'''(3)'''&nbsp;  Using a similar procedure as in&nbsp; '''(2)''',&nbsp; a direct signal&nbsp; $\rm (DC)$&nbsp; of&nbsp; $2\hspace{0.02cm}\text{ V}$&nbsp; is obtained for&nbsp; $r(t)$ :  
*The gaps in the signal $s(t)$ are completely filled by the echo $s(t - T/2)$.
+
*The gaps in the signal&nbsp; $s(t)$&nbsp; are completely filled by the echo&nbsp; $s(t - T/2)$.
*This result can also be derived in the frequency domain.  
+
*This result can also be derived in the frequency domain.&nbsp; The channel frequency response is with&nbsp; $\alpha = 1$&nbsp; and&nbsp; $\tau = T/2$:
*The channel frequency response is with $\alpha = 1$ and $\tau = T/2$:
 
 
:$$H( f ) = 1 + 1 \cdot {\rm{e}}^{ - {\rm{j\pi }}fT}  = 1 + \cos ( {{\rm{\pi }}fT} ) - {\rm{j}} \cdot {\rm{sin}}( {{\rm{\pi }}fT} ).$$
 
:$$H( f ) = 1 + 1 \cdot {\rm{e}}^{ - {\rm{j\pi }}fT}  = 1 + \cos ( {{\rm{\pi }}fT} ) - {\rm{j}} \cdot {\rm{sin}}( {{\rm{\pi }}fT} ).$$
*Apart from the DC component, the input signal ${s(t)}$ only has components at $f = f_0 = 1/T$, $f = 3 \cdot f_0$, $f = 5 \cdot f_0$ etc..  
+
*Apart from the DC component, the input signal&nbsp; ${s(t)}$&nbsp; only has components at&nbsp; $f = f_0 = 1/T$,&nbsp; $f = 3 \cdot f_0$,&nbsp; $f = 5 \cdot f_0$,&nbsp; etc..  
*At these frequencies, however, both the real&ndash; and the imaginary part of ${H(f)}$ are equal to zero.
+
*At these frequencies, however, both the real&ndash; and the imaginary part of&nbsp; ${H(f)}$&nbsp; are equal to zero.
*Thus, for the output spectrum with $A_0 = 1 \text{ V}$ and $H(f = 0) = 2$ we obtain:
+
*Thus, for the output spectrum with&nbsp; $A_0 = 1 \text{ V}$&nbsp; and&nbsp; $H(f = 0) = 2$&nbsp; we obtain:
 
:$$R(f) = A_0  \cdot H(f = 0) \cdot \delta (f) = 2\;{\rm{V}} \cdot \delta (f).$$
 
:$$R(f) = A_0  \cdot H(f = 0) \cdot \delta (f) = 2\;{\rm{V}} \cdot \delta (f).$$
The inverse Fourier transformation thus also yields $r(t) \underline{= 2 \text{ V= const}}$.
+
The inverse Fourier transformation thus also yields&nbsp; $r(t) \underline{= 2 \text{ V= const}}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 08:05, 26 May 2021

Transmission signal  $s(t)$, and 
reception signal  $r(t)$  with echo

We consider a periodic rectangular signal  $s(t)$  with the possible amplitude values  $0\text{ V}$  and  $2\text{ V}$  and the period duration  $T_0 = T = 1 \text{ ms}$.  At the jump points, e.g. at  $t = T/4$, the signal value are  $1\text{ V}$.  The DC component  $($i.e. the Fourier coefficient  $A_0)$  of the signal is  $1\text{ V}$, too.

Further applies:

  • Due to symmetry (even function), all sine coefficients  $B_n = 0$.
  • The coefficients  $A_n$  with even  $n$  are also zero.
  • For odd values of  $n$,  the following applies:
$$A_n = ( { - 1} )^{\left( {n - 1} \right)/2} \cdot \frac{{4\;{\rm{V}}}}{{n \cdot {\rm{\pi }}}}.$$

The signal  $s(t)$  reaches the receiver via two paths (see sketch below):

  • Once on the direct path and secondly via a secondary path.
  • The latter is characterised by the attenuation factor  $\alpha$  and the transit time  $\tau$ .
  • Therefore, the following applies to the received signal:
$$r(t) = s(t) + \alpha \cdot s( {t - \tau } ).$$

The frequency response of the channel is  $H(f) = R(f)/S(f)$,  the impulse response is denoted by  $h(t)$ .





Hints:


Questions

1

Which statements are true regarding the impulse response  $h(t)$?

For  $0 ≤ t < \tau$  holds  $h(t) = 1$, and for  $t > \tau$  holds   $h(t) = 1 + \alpha$.
It holds that  $h(t) = \delta (t) + \alpha \cdot \delta(t - \tau)$.
$h(t)$  has a Gaussian shape.

2

Calculate the reception signal  $r(t)$  for the channel parameters  $\alpha = -0.5$  and  $\tau = T/4$.
What values result at the given times?

$r(t = 0.2 \cdot T)\ = \ $

 $\text{V}$
$r(t = 0.3 \cdot T)\ = \ $

 $\text{V}$

3

Calculate the reception signal  $r(t)$  with  $\alpha = 1$  and  $\tau = T/2$.  Interpret the result in the frequency domain.
What value results for  $t = T/2$?

$r(t = T/2)\ = \ $

 $\text{V}$


Solution

(1)  The second suggested solution is correct:

  • The impulse response is equal to the received signal  $r(t)$, if a single Dirac delta is present at the input at time  $t = 0$ :
$$h(t) = \delta (t) + \alpha \cdot \delta( {t - \tau } ).$$


Convolution of square wave signal  $s(t)$  and impulse response  $h(t)$

(2)  It holds  $r(t) = s(t) ∗ h(t)$.  This convolution operation is most easily performed graphically:

The values of the received signal are generally:

  • $0.00 < t/T < 0.25\text{:}\hspace{0.4cm} r(t) = +1\hspace{0.02cm}\text{ V}$,
  • $0.25 < t/T < 0.50\text{:}\hspace{0.4cm} r(t) = -1 \hspace{0.02cm}\text{ V}$,
  • $0.50 < t/T < 0.75\text{:}\hspace{0.4cm} r(t) = 0 \hspace{0.02cm}\text{ V}$,
  • $0.75 < t/T < 1.00\text{:}\hspace{0.4cm} r(t) = +2 \hspace{0.02cm}\text{ V}$.


The values we are looking for are thus

$$r(t = 0.2 \cdot T) \hspace{0.15cm}\underline{= +1 \hspace{0.02cm}\text{ V}},$$
$$r(t = 0.3 · T) \hspace{0.15cm}\underline{= -1 \hspace{0.02cm}\text{ V}}.$$


(3)  Using a similar procedure as in  (2),  a direct signal  $\rm (DC)$  of  $2\hspace{0.02cm}\text{ V}$  is obtained for  $r(t)$ :

  • The gaps in the signal  $s(t)$  are completely filled by the echo  $s(t - T/2)$.
  • This result can also be derived in the frequency domain.  The channel frequency response is with  $\alpha = 1$  and  $\tau = T/2$:
$$H( f ) = 1 + 1 \cdot {\rm{e}}^{ - {\rm{j\pi }}fT} = 1 + \cos ( {{\rm{\pi }}fT} ) - {\rm{j}} \cdot {\rm{sin}}( {{\rm{\pi }}fT} ).$$
  • Apart from the DC component, the input signal  ${s(t)}$  only has components at  $f = f_0 = 1/T$,  $f = 3 \cdot f_0$,  $f = 5 \cdot f_0$,  etc..
  • At these frequencies, however, both the real– and the imaginary part of  ${H(f)}$  are equal to zero.
  • Thus, for the output spectrum with  $A_0 = 1 \text{ V}$  and  $H(f = 0) = 2$  we obtain:
$$R(f) = A_0 \cdot H(f = 0) \cdot \delta (f) = 2\;{\rm{V}} \cdot \delta (f).$$

The inverse Fourier transformation thus also yields  $r(t) \underline{= 2 \text{ V= const}}$.