Difference between revisions of "Zusammenhang zwischen WDF und VTF (Lernvideo)"
m (Text replacement - "[[Biografien_und_Bibliografien" to "[[Biographies_and_Bibliographies") |
m (Text replacement - "„" to """) |
||
Line 18: | Line 18: | ||
=== Anmerkungen zur Nomenklatur === | === Anmerkungen zur Nomenklatur === | ||
− | In diesem Lernvideo gilt wie im gesamten Lerntutorial | + | In diesem Lernvideo gilt wie im gesamten Lerntutorial "LNTwww” folgende Nomenklatur: |
* $f_x(x)$ ist die ''Wahrscheinlichkeitsdichtefunktion'' (WDF, englisch: ''Probability Density Function'', PDF) der Zufallsgröße $x$. | * $f_x(x)$ ist die ''Wahrscheinlichkeitsdichtefunktion'' (WDF, englisch: ''Probability Density Function'', PDF) der Zufallsgröße $x$. | ||
*$F_{x}(r)$ ist die ''Verteilungsfunktion'' (VTF, englisch: ''Cumulative Distribution Function, CDF). Sie gibt die Wahrscheinlichkeit ${\rm Pr}( x \le r)$ an, dass die Zufallsgröße $x$ kleiner oder gleich einem reellen Zahlenwert $r$ ist. | *$F_{x}(r)$ ist die ''Verteilungsfunktion'' (VTF, englisch: ''Cumulative Distribution Function, CDF). Sie gibt die Wahrscheinlichkeit ${\rm Pr}( x \le r)$ an, dass die Zufallsgröße $x$ kleiner oder gleich einem reellen Zahlenwert $r$ ist. |
Revision as of 15:19, 28 May 2021
Teil 1
Definition von Wahrscheinlichkeitsdichtefunktion (WDF) und Verteilungsfunktion (VTF) – Überschreitungswahrscheinlichkeit – WDF und VTF bei diskreten Zufallsgrößen (Dauer 6.35).
Teil 2
Simulation von WDF und VTF – Gleichverteilte Zufallsgröße – Rayleighverteilte Zufallsgröße (Dauer 3:17).
Anmerkungen zur Nomenklatur
In diesem Lernvideo gilt wie im gesamten Lerntutorial "LNTwww” folgende Nomenklatur:
- $f_x(x)$ ist die Wahrscheinlichkeitsdichtefunktion (WDF, englisch: Probability Density Function, PDF) der Zufallsgröße $x$.
- $F_{x}(r)$ ist die Verteilungsfunktion (VTF, englisch: Cumulative Distribution Function, CDF). Sie gibt die Wahrscheinlichkeit ${\rm Pr}( x \le r)$ an, dass die Zufallsgröße $x$ kleiner oder gleich einem reellen Zahlenwert $r$ ist.
- Zwischen diesen beiden Größen besteht der Funtionalzusammenhang $F_{x}(r) = \int_{-\infty}^{r}f_x(x)\,{\rm d}x.$
In der Literatur wird häufig die WDF mit $f_X(x)$ bezeichnet und die VTF mit $F_X(x)$. Hierbei gibt $X$ die Zufallsgröße an und $x \in X$ eine Realisierung. Die entsprechende Verknüpfungsgleichung lautet dann: $F_{X}(x) = {\rm Pr}( X \le x) = \int_{-\infty}^{x}f_X(\xi)\,{\rm d}\xi.$
Dieses Lernvideo wurde 2004 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch und Regie: Günter Söder und Johannes Zangl, Sprecher: Joachim Schenk, Realisierung: Franz Kohl und Ji Li.
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch Tasnád Kernetzky und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.