Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Applets:Dämpfung von Kupferkabeln"

From LNTwww
m (Text replacement - "”" to """)
 
(60 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{FirstPage}}
+
{{LntAppletLink|attenuationCopperCables_en}}
{{Header|
+
 
Untermenü=
+
==Programmbeschreibung==
|Vorherige Seite=
+
<br>
|Nächste Seite=
+
Dieses Applet berechnet die Dämpfungsfunktion aK(f) von leitungsgebundenen Übertragungsmedien (jeweils mit  der Kabellänge l):
}}
+
*Für Koaxialkabel verwendet man meist die Gleichung aK(f)=(α0+α1f+α2f)l.
 +
*Dagegen werden Zweidrahtleitungen oft in der Form $a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l$ dargestellt.
 +
*Realisiert ist auch die Umrechnung der (k1, k2, k3)&ndash;Darstellung in die (α0, α1, α2)&ndash;Form für $B = 30 \ \rm MHz$ und umgekehrt.
 +
 
 +
 
 +
Außer der Dämpfungsfunktion aK(f)  können graphisch dargestellt werden:
 +
*der  zugehörige Betragsfrequenzgang $\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20},$
 +
*der  Entzerrer&ndash;Frequenzgang $\left | H_{\rm E}(f)\right | = \left | H_{\rm CRO}(f)  /  H_{\rm K}(f)\right | , der zu einem Nyquist&ndash;Gesamtfrequenzgang H_{\rm CRO}(f) $ führt,
 +
*der  entsprechende Betrags&ndash;Quadrat&ndash;Frequenzgang |HE(f)|2.
 +
 
 +
 
 +
Das Integral über $\left | H_{\rm E}(f)\right |^2 ist ein Maß für die Rauschüberhöhung des ausgewählten Nyquist&ndash;Gesamtfrequenzgangs und damit auch für zu erwartende Fehlerwahrscheinlichkeit. Aus dieser wird der ''Gesamt&ndash;Wirkungsgrad'' &nbsp;\eta_\text{K+E} für '''K'''anal und '''E'''ntzerrer berechnet, der im Applet in \rm dB$ ausgegeben wird.
 +
 
 +
 
 +
Durch Optimierung des Roll-off&ndash;Faktors r des Cosinus&ndash;Roll-off&ndash;Frequenzgangs H_{\rm CRO}(f) kommt man zum ''Kanal&ndash;Wirkungsgrad'' &nbsp; \eta_\text{K}. Dieser gibt also die Verschlechterung des Gesamtsystems aufgrund der  Dämpfungsfunktion a_{\rm K}(f) des Übertragungsmediums an.
 +
 
 +
 
  
==Dämpfung von Kupferkabeln==
 
<applet>
 
  
 
==Theoretischer Hintergrund==
 
==Theoretischer Hintergrund==
*Die Dämpfungsfunktion eines Koaxialkabels wird meist in folgender Form angegeben:  
+
<br>
$$a_k(f)=(a_0+a_1\cdot f+a_2\cdot f^{\frac{1}{2}})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{Betragsfrequenzgang} \left| H_K(f)\right|=10^{-a_K(f)/20}.$$
+
===Betragsfrequenzgang und Dämpfungsfunktion===
*$a_K(f)$ ist direkt proportional zur Leitungslänge $l$.
+
Es besteht folgender Zusammenhang zwischen dem Betragsfrequenzgang und der Dämpfungsfunktion:
*Der Koeffizient $a_0$ beschreibt die Ohmschen Längenverluste.
+
:\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.
*Der Koeffizient $a_1$ beschreibt die Querverluste.
+
*Der Index "K" soll deutlich machen, dass das betrachtete LZI&ndash;System ein '''K'''abel ist.
*Der Koeffizient $a_2$ beschreibt den Skineffekt; dieser ist sehr dominant.
+
*Bei der ersten Berechnungsvorschrift ist die Dämpfungsfunktion a_\text{K}(f) in \rm dB (Dezibel) einzusetzen.
*In der Literatur findet man folgende Dämpfungsfunktion einer Zweidrahtleitung:
+
*Bei der zweiten Berechnungsvorschrift ist die Dämpfungsfunktion a_\text{K, Np}(f) in \rm Np (Neper) einzusetzen.
$$a_k(f)=(k_1+k_2\cdot f^{k_3})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{empirische Formel von Pollakowski &amp; Wellhausen.}
+
* Es gelten folgende Umrechnungen  \rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np bzw. \rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB.
*Umrechnung der k-Parameter in die $a$-Parameter nach dem Kriterium, dass der mittlere quadratische Fehler innerhalb der Bandbreite $B$ minimal sein soll:
+
* In diesem Applet werden ausschließlich die dB&ndash;Werte verwendet.
 +
 
 +
===Dämpfungsfunktion eines Koaxialkabels===
 +
Die Dämpfungsfunktion eines Koaxialkabels der Länge l wird in [Wel77]<ref name ='Wel77'>Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.</ref> wie folgt angegeben:
 +
:$$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
 +
*Beachten Sie bitte den Unterschied zwischen der Dämpfungsfunktion a_{\rm K}(f) in \rm dB und den "alpha"&ndash;Koeffizienten \alpha_{\rm K}(f)=a_{\rm K}(f)/l mit anderen Pseudo&ndash;Einheiten.
 +
*Die Dämpfungsfunktion a_{\rm K}(f) ist direkt proportional zur Kabellänge l. Man bezeichnet den Quotienten a_{\rm K}(f)/l als "Dämpfungsmaß" oder "kilometrische Dämpfung".
 +
*Der frequenzunabhängige Anteil α_0 des Dämpfungsmaßes berücksichtigt die Ohmschen Verluste ("Leitungsverluste").
 +
*Der frequenzproportionale Anteil $α_1 · f$ des Dämpfungsmaßes ist auf die Ableitungsverluste ("Querverluste")  zurückzuführen.
 +
*Der dominante Anteil α_2 geht auf den [[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Frequenzgang_eines_Koaxialkabels|Skineffekt]] zurück, der bewirkt, dass bei höherfrequentem Wechselstrom die Stromdichte im Leiterinneren niedriger ist als an der Oberfläche. Dadurch steigt der Widerstandsbelag  einer elektrischen Leitung mit der Wurzel aus der Frequenz an.
 +
 
 +
 
 +
Die Konstanten für das ''Normalkoaxialkabel''  mit 2.6 mm Innendurchmesser und 9.5 mm Außendurchmesser &nbsp; &rArr;&nbsp; kurz '''Coax (2.6/9.5 mm)''' lauten:
 +
:$$\alpha_0  = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
 +
 
 +
Entsprechend gilt für das ''Kleinkoaxialkabel'' &nbsp; &rArr;&nbsp; kurz '''Coax (1.2/4.4 mm)''':
 +
:$$\alpha_0  = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm}
 +
\alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm}  \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
 +
 
 +
 
 +
Diese Werte können aus den geometrischen Abmessungen der Kabel berechnet werden und wurden durch Messungen am Fernmeldetechnischen Zentralamt in Darmstadt bestätigt – siehe [Wel77]<ref name ='Wel77'>Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.</ref> .  Sie gelten für eine Temperatur von 20°C (293 K) und Frequenzen größer als 200 kHz.
 +
 
 +
 
 +
===Dämpfungsfunktion einer Zweidrahtleitung===
 +
Die Dämpfungsfunktion einer Zweidrahtleitung (englisch: ''Two&ndash;wired Line'') der Länge l wird in [PW95]<ref name ='PW95'>Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.</ref> wie folgt angegeben:
 +
:$$a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.$$
 +
Dieser Funktionsverlauf ist nicht direkt interpretierbar, sondern es handelt sich um eine phänomenologische Beschreibungsform.
 +
 
 +
Ebenfalls in [PW95]<ref name ='PW95'>Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.</ref>findet man die aus Messergebnissen ermittelten Konstanten für verschiedene Leitungsdurchmesser d:
 +
* d = 0.35 \ {\rm mm}: &nbsp;  $k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62$,
 +
* d = 0.40 \ {\rm mm}: &nbsp;  k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59,
 +
* d = 0.50 \ {\rm mm}: &nbsp;  k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60
 +
* d = 0.60 \ {\rm mm}: &nbsp;  k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61
 +
 
 +
 
 +
Man erkennt aus diesen Zahlenwerten:
 +
*Dämpfungsmaß α(f) und Dämpfungsfunktion a_{\rm K}(f) = α(f) · l hängen signifikant vom Leitungsdurchmesser ab. Die seit 1994 verlegten Kabel  mit d = 0.35 mm und  d = 0.5 mm haben etwa ein um 10\% größeres Dämpfungsmaß als die älteren Leitungen mit  d = 0.4bzw. 0.6 mm.
 +
*Dieser mit den Herstellungs– und Verlegungskosten begründete kleinere Durchmesser vermindert allerdings die Reichweite l_{\rm max} der auf diesen Leitungen eingesetzten Übertragungssysteme signifikant, so dass im schlimmsten Fall teuere Zwischenregeneratoren eingesetzt werden müssen.
 +
*Die heute üblichen Übertragungsverfahren für Kupferleitungen belegen allerdings nur ein relativ schmales Frequenzband, zum Beispiel sind dies bei [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|ISDN]] 120\ \rm  kHz und bei [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_DSL|DSL]] ca. 1100 \ \rm kHz. Für f = 1 \ \rm MHz beträgt das Dämpfungsmaß für ein 0.4 mm–Kabel etwa 20 \ \rm dB/km, so dass selbst bei einer Kabellänge von l = 4 \ \rm km der Dämpfungswert nicht über 80 \ \rm dB liegt.
 +
 
 +
 
 +
===Umrechnung zwischen k– und \alpha– Parametern===
 +
Es besteht die Möglichkeit, die  k&ndash;Parameter des  Dämpfungsmaßes &nbsp; &rArr; &nbsp;  \alpha_{\rm I} (f) in entsprechende \alpha&ndash;Parameter &nbsp; &rArr; &nbsp;  \alpha_{\rm II} (f) umzurechnen:
 +
:\alpha_{\rm I} (f) = k_1 + k_2  \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm mit} \hspace{0.15cm} f_0 = 1\,{\rm MHz},
 +
:\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}.
 +
 
 +
Als Kriterium dieser Umrechnung gehen wir davon aus, dass die quadratische Abweichung dieser beiden Funktionen innerhalb einer Bandbreite  B minimal ist:
 +
:$$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
 +
Es ist offensichtlich, dass α_0 = k_1 gelten wird. Die Parameter α_1 und α_2 sind von der zugrundegelegten Bandbreite B abhängig und lauten:
 +
:\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot  {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}
 +
 
 +
In der Gegenrichtung lautet die Umrechnungsvorschrift für den Exponenten:
 +
 
 +
:k_3 = \frac{A + 0.5} {A +1}, \hspace{0.2cm}\text{Hilfsgröße:  }A = \frac{2} {3} \cdot  \frac{\alpha_1 \cdot \sqrt{f_0}}{\alpha_2} \cdot \sqrt{B/f_0}.
 +
 
 +
Mit diesem Ergebnis lässt sich k_2 mit jeder der oberen Gleichungen angeben.
 +
 
 +
{{GraueBox|TEXT= 
 +
\text{Beispiel 1:}&nbsp; Im Folgenden verwenden wir die Normierunggröße f_0 = 1 \ \rm MHz.
 +
*Für k_3 = 1 (frequenzproportionales Dämpfungsmaß) ergeben sich folgerichtig &nbsp; \alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 =  {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .
 +
*Für k_3 = 0.5  (entsprechend Skineffekt) erhält man folgende Koeffizienten: &nbsp; \alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.
 +
*Für k_3 < 0.5 ergibt sich ein negatives \alpha_1. Umrechnung ist nur für 0.5 \le k_3 \le 1 möglich.
 +
*Für 0.5 \le k_3 \le ergeben sich Koeffizienten \alpha_1 > 0 und \alpha_2 > 0, die  auch von B/f_0 abhängen.
 +
*Aus \alpha_1 = 0.3\, {\rm dB}/ ({\rm km \cdot MHz}) \hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 3\, {\rm dB}/ ({\rm km \cdot \sqrt{MHz} })\hspace{0.05cm},\hspace{0.2cm}B = 30 \ \rm MHz folgt k_3 = 0.63 und k_2 = 2.9 \ \rm dB/km.}}
 +
 
 +
 
 +
 +
 
 +
 
 +
 
 +
===Zum Kanaleinfluss  auf die binäre Nyquistentzerrung=== 
 +
[[File:Applet_Kabeldaempfung_1_version3.png|right|frame|Vereinfachtes Blockschaltbild des optimalen Nyquistentzerrers|class=fit]]
 +
Wir gehen vom skizzierten Blockschaltbild aus. Zwischen der Diracquelle und dem Entscheider liegen die Frequenzgänge für Sender &nbsp;&rArr;&nbsp; H_{\rm S}(f),  Kanal &nbsp;&rArr;&nbsp; H_{\rm K}(f) und Empfänger &nbsp; &rArr;&nbsp; H_{\rm E}(f).
 +
 
 +
In diesem Applet
 +
*vernachlässigen wir den Einfluss der Sendeimpulsform &nbsp; &rArr; &nbsp; H_{\rm S}(f) \equiv 1 &nbsp; &rArr; &nbsp; diracförmiges Sendesignal s(t),
 +
*setzen ein binäres Nyquistsystem mit Cosinus&ndash;Roll-off um die Nyquistfrequenz f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T) voraus: 
 +
:H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).
 +
 
 +
[[File:Applet_Kabeldaempfung_2_version2.png|right|frame|Frequenzgang mit Cosinus–Roll-off|class=fit]]
 +
 
 +
Das bedeutet: Das [[Digital_Signal_Transmission/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Frequenzbereich|erste Nyquistkriterium]] wird erfüllt&nbsp; &rArr; &nbsp; zeitlich aufeinander folgende Impulse stören sich nicht gegenseitig  &nbsp; ⇒  &nbsp; es gibt keine [[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Impulsinterferenzen]] (englisch: ''Intersymbol Interference'', ISI).
 +
 
 +
Bei weißem Rauschen wird somit die Übertragungsqualität allein durch die Rauschleistung vor dem Empfänger bestimmt:
 +
 
 +
:P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.
 +
<br clear=all>
 +
Die kleinstmögliche Rauschleistung ergibt sich bei idealem Kanal &nbsp; &rArr; &nbsp; H_{\rm K}(f) \equiv 1 und gleichzeitig dem Frequenzgang  H_{\rm CRO}(f) mit Roll-off&ndash;Faktor r = 1 im Bereich |f| \le 2 \cdot f_{\rm Nyq} (siehe Skizze):
 +
 
 +
:P_\text{N, min} =  P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1; \ \text{ Roll-off&ndash;Faktor } r=r_{\rm opt} =1 \big ] = N_0 \cdot 3/4 \cdot f_{\rm Nyq} .
 +
 
 +
{{BlaueBox|TEXT=
 +
\text{Definitionen:}&nbsp; 
 +
*Als Gütekriterium für ein gegebenes System verwenden wir den '''Gesamt&ndash;Wirkungsgrad''':
 +
 
 +
:$$\eta_\text{K+E} =  \frac{P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=r_{\rm opt} =1 \big ]}{P_{\rm N} \ \big [\text{gegebenes System:  Kanal  }H_{\rm K}(f), \ \text{Roll-off-Faktor  }r \big ]} =\left [ \frac{1}{3/4 \cdot f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \right ]^{-1}\le 1.$$
 +
 
 +
:Diese Systemgröße wird im Applet für beide Parametersätze in logarithmierter Form angegeben: &nbsp; 10 \cdot \lg \ \eta_\text{K+E} \le 0 \ \rm dB.
 +
 
 +
*Durch Variation und Optimierung des Roll-off-Faktors r erhält man den '''Kanal&ndash;Wirkungsgrad''':
 +
 
 +
:\eta_\text{K} = \max_{0 \le r \le 1} \ \eta_\text{K+E} .}}
 +
 
 +
 
 +
[[File:Applet_Kabeldaempfung_3_version2.png|right|frame|Betrags&ndash;Quadrat&ndash;Frequenzgang $\left \vert H_{\rm E}(f)\right \vert ^2 $|class=fit]]
 +
{{GraueBox|TEXT=
 +
\text{Beispiel 2:}&nbsp;
 +
Die Grafik zeigt den Betrags&ndash;Quadrat&ndash;Frequenzgang $\left \vert H_{\rm E}(f)\right \vert ^2 mit \left \vert H_{\rm E}(f)\right \vert = H_{\rm CRO}(f)  /  \left \vert H_{\rm K}(f)\right \vert$ für folgende Randbedingungen:
 +
*Dämpfungsfunktion des Kanals: &nbsp; $a_{\rm K}(f) = 1 \ {\rm dB} \cdot \sqrt{f/\ {\rm MHz} }$,
 +
*Nyquist&ndash;Frequenz: : &nbsp; $f_{\rm Nyq} = 20 \ {\rm MHz}, Roll-off-Faktor r = 0.5$
 +
 
 +
 
 +
Daraus ergeben sich folgende Konsequenzen:
 +
*Im Bereich bis f_{1} = 10 \ {\rm MHz} ist H_{\rm CRO}(f)  = 1 &nbsp; &rArr; &nbsp; $\left \vert H_{\rm E}(f)\right \vert ^2 = \left \vert H_{\rm K}(f)\right \vert ^{-2}$ (siehe gelbe Hinterlegung).
 +
*Erst im Bereich von $f_{1}$ bis f_{2} = 30 \ {\rm MHz}  ist die Flanke von H_{\rm CRO}(f) wirksam und $\left \vert H_{\rm E}(f)\right \vert ^2$ wird immer kleiner.
 +
*Das Maximum von  $\left \vert H_{\rm E}(f_{\rm max})\right \vert ^2 bei f_{\rm max} \approx 11.5 \ {\rm MHz}$  ist mehr als doppelt so groß wie $\left \vert H_{\rm E}(f = 0)\right \vert ^2 = 1$.
 +
*Das Integral über  \left \vert H_{\rm E}(f)\right \vert ^2 ist ein Maß für die wirksame Rauschleistung. Diese ist im Beispiel um den Faktor 4.6 größer als die minimale Rauschleistung (für a_{\rm K}(f) = 0 \ {\rm dB} und r=1) &nbsp; &rArr; &nbsp; $10 \cdot \lg \ \eta_\text{K+E} \approx - 6.6 \ {\rm dB}.$}}
 +
 
 +
 
 +
==Versuchsdurchführung==
 +
 
 +
[[File:Applet_Kabeldaempfung_6_version1.png|right]]
 +
*Wählen Sie zunächst die Nummer '''1''' ... '''11''' der zu bearbeitenden Aufgabe.
 +
*Der Aufgabentext wird angezeigt. Die Parameterwerte sind angepasst.
 +
*Lösung nach Drücken von "Hide solution".
 +
*Aufgabenstellung und Lösung in Englisch.
 +
 
 +
 
 +
Die Nummer '''0''' entspricht einem "Reset":
 +
*Gleiche Einstellung wie beim Programmstart.
 +
*Ausgabe eines "Reset&ndash;Textes" mit weiteren Erläuterungen zum Applet.
 +
 
 +
 
 +
In der folgenden Beschreibung bezeichnet '''Blue''' den linken Parametersatz (im Applet blau markiert) '''Red''' den rechten Parametersatz (im Applet rot markiert). Alle Angaben mit Hochkomma sind ohne Einheit, zum Beispiel steht {\alpha_2}' =2  &nbsp; für &nbsp; \alpha_2 =2\,  {\rm dB} / ({\rm km \cdot \sqrt{MHz} }).
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(1)'''&nbsp; Setzen Sie '''Blue''' zunächst auf \text{Coax (1.2/4.4 mm)} und anschließend auf $\text{Coax (2.6/9.5 mm)}$. Die Kabellänge sei jeweils $l_{\rm Blue}= 5\ \rm km$.
 +
:Betrachten und Interpretieren Sie  a_{\rm K}(f) und  \vert H_{\rm K}(f) \vert, insbesondere die Funktionswerte a_{\rm K}(f = f_\star = 30 \ \rm MHz) und \vert H_{\rm K}(f = 0) \vert.}}
 +
 
 +
 
 +
\Rightarrow\hspace{0.3cm}\text{Näherungsweise steigt die Dämpfungsfunktion mit }\sqrt{f}\text{ und der Betragsfrequenzgang fällt ähnlich einer Exponentialfunktion};
 +
 
 +
\hspace{1.15cm}\text{Coax (1.2/4.4 mm):    }a_{\rm K}(f =  f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.
 +
 
 +
$\hspace{1.15cm}\text{Coax (2.6/9.5 mm):    }a_{\rm K}(f =  f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;$
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(2)'''&nbsp; Für '''Blue''' gelte \text{Coax (2.6/9.5 mm)} und l_{\rm Blue} = 5\ \rm km. Wie wird a_{\rm K}(f =f_\star = 30 \ \rm MHz) von \alpha_0\alpha_1 und  $\alpha_2$ beeinflusst?}}
 +
 
 +
 
 +
$\Rightarrow\hspace{0.3cm}\text{Entscheidend ist }\alpha_2\text{  (Skineffekt). Die Beitrag von } \alpha_0\text{ ist nur ca.  0.1 dB und der von }\alpha_1 \text{  nur ca.  0.6 dB.}$
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(3)'''&nbsp; Setzen Sie zusätzlich '''Red''' auf $\text{Two&ndash;wired Line (0.5 mm)} und l_{\rm Red} = 1\ \rm km. Welcher Wert ergibt sich für a_{\rm K}(f =f_\star= 30 \ \rm MHz)$?
 +
:Bis zu welcher Länge l_{\rm Red} ist die rote Dämpfungsfunktion vergleichbar mit der blauen?}}
 +
 
 +
 
 +
\Rightarrow\hspace{0.3cm}\text{Für die rote Kurve gilt:    }a_{\rm K}(f =  f_\star) = 87.5 {\ \rm dB} \text{. Obige Bedingung wird erfüllt für }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f =  f_\star) = 61.3 {\ \rm dB}.
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(4)'''&nbsp;  Setzen Sie '''Red''' auf {k_1}' = 0, {k_2}' = 10, {k_3}' = 0.75, {l_{\rm red} } = 1 \ \rm km und variieren Sie den Parameter 0.5 \le k_3 \le 1.  
 +
:Was erkennt man anhand von  a_{\rm K}(f) und  \vert H_{\rm K}(f) \vert?  }}
 +
 
 +
 
 +
\Rightarrow\hspace{0.3cm}\text{Bei festem }k_2\text {wird }a_{\rm K}(f)\text{ mit größerem }k_3\text{ immer größer und  }\vert H_{\rm K}(f) \vert \text{ nimmt immer schneller ab. Mit }k_3 =1: a_{\rm K}(f)\text{ steigt linear.}
 +
 
 +
$\hspace{1.15cm}\text{Mit }k_3 \to 0.5\text{ wird die Dämpfungsfunktion wie beim Koaxialkabel immer mehr durch den Skineffekt bestimmt.}$
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(5)'''&nbsp; Setzen Sie '''Red''' auf \text{Two&ndash;wired Line (0.5 mm)} und '''Blue''' auf \text{Conversion of Red}. Es gelte l_{\rm Red} = l_{\rm Blue} = 1\ \rm km.
 +
:Betrachten und interpretieren Sie die dargestellten Funktionsverläufe für a_{\rm K}(f) und  \vert H_{\rm K}(f) \vert.}}
 +
 
 +
 
 +
$\Rightarrow\hspace{0.3cm}\text{Sehr gute Approximation der Zweidrahtleitung durch den blauen Parametersatz, sowohl bezüglich }a_{\rm K}(f) \text{ als auch }\vert H_{\rm K}(f) \vert.$
 +
 
 +
$\hspace{1.15cm}\text{Die errechneten Parameterwerte nach der Konvertierung sind }{\alpha_0}' = {k_1}' = 4.4, \ {\alpha_1}' = 0.76, \ {\alpha_2}' = 11.12.$
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(6)'''&nbsp; Es gelten die Einstellungen von '''(5)'''. Welche Anteile der Dämpfungsfunktion gehen auf Ohmschen Verlust, Querverluste und Skineffekt zurück?  }}
 +
 
 +
 
 +
$\Rightarrow\hspace{0.3cm}\text{Lösung anhand '''Blue''':  }a_{\rm K}(f = f_\star= 30 \ {\rm MHz}) = 88.1\ {\rm dB}, \hspace{0.2cm}\text{ohne }\alpha_0\text{:    }83.7\ {\rm dB}, \hspace{0.2cm}\text{ohne }\alpha_0 \text{ und }  \alpha_1\text{:    }60.9\ {\rm dB}.$
 +
 
 +
\hspace{1.15cm}\text{Bei einer Zweidrahtleitung ist der Einfluss der Längs&ndash; und der Querverluste signifikant größer als bei einem Koaxialkabel.}
 +
 
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(7)'''&nbsp; Setzen Sie '''Blue''' auf {\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0 und '''Red''' auf ${k_1}' = 2, {k_2}' = 0, {l_{\rm red} } = 1 \ \rm km. Zusätzlich gelte {f_{\rm Nyq} }' =15 und r= 0.5$.
 +
:Wie groß ist jeweils der Gesamt&ndash;Wirkungsgrad $\eta_\text{K+E} und der Kanal&ndash;Wirkungsgrad \eta_\text{K}$?}}
 +
 
 +
 
 +
\Rightarrow\hspace{0.3cm}\text{Es gilt }10 \cdot \lg \ \eta_\text{K+E} = -0.7\ \ {\rm dB}\text{ (Blue: ideales System) und }10 \cdot \lg \ \eta_\text{K+E} = -2.7\ \ {\rm dB}\text{ (Red: nur Gleichsignaldämpfung)}.
 +
 
 +
\hspace{0.95cm}\text{Der bestmögliche Rolloff&ndash;Faktor ist }r = 1.\text{ Somit  ist }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) bzw. }10 \cdot \lg \ \eta_\text{K} = -2\  {\rm dB}\text{ (Red)}.
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(8)'''&nbsp; Es gilt die Einstellung von '''(7)'''. Mit welcher Sendeleistung  P_{\rm red} in Bezug zu P_{\rm blue} erreichen beide Systeme  gleiche Fehlerwahrscheinlichkeit?  }}
 +
 
 +
 
 +
$\Rightarrow\hspace{0.3cm}\text{Es muss gelten:  }10 \cdot \lg \ P_{\rm red}/P_{\rm blue} =2 \ {\rm dB} \ \ \text{ &rArr; } \ \ P_{\rm red}/P_{\rm blue} = 10^{0.2} = 1.585.$
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(9)'''&nbsp; Setzen Sie '''Blue''' auf {\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2 und '''Red''' auf "Inactive". Zusätzlich gelte {f_{\rm Nyq} }' =15 und r= 0.7.
 +
:Welchen Verlauf hat \vert H_{\rm E}(f) \vert? Wie groß ist sind Gesamt&ndash;Wirkungsgrad \eta_\text{K+E} und Kanal&ndash;Wirkungsgrad \eta_\text{K}?}}
 +
 
 +
 
 +
$\Rightarrow\hspace{0.3cm}\text{Für } f < 7.5 {\ \rm MHz}\text{ ist } \vert H_{\rm E}(f) \vert  = \vert H_{\rm K}(f) \vert ^{-1}.\text{ Für }(f > 22.5 {\ \rm MHz)}\text{ ist: }\vert H_{\rm E}(f) \vert  = 0.\text{ Dazwischen Einfluss der CRO&ndash;Flanke.}$
 +
 
 +
$\hspace{0.95cm}\text{Der bestmögliche Rolloff&ndash;Faktor }r = 0.7\text{ ist bereits eingestellt: }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.$
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(10)'''&nbsp; Setzen Sie '''Blue''' auf {\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8 sowie '''Red''' auf "Inactive". Zusätzlich gelte {f_{\rm Nyq} }' =15 und r= 0.7.
 +
:Welchen Wert hat \vert H_{\rm E}(f = 0) \vert? Was ist der Maximalwert von \vert H_{\rm E}(f) \vert? Wie groß ist ist der Kanal&ndash;Wirkungsgrad \eta_\text{K}?}}
 +
 
 +
 
 +
$\Rightarrow\hspace{0.3cm}\text{Es gilt }\vert H_{\rm E}(f = 0) \vert =  \vert H_{\rm E}(f = 0) \vert ^{-1}= 1 \text{ und das Maximum von } \vert H_{\rm E}(f) \vert \text{ ist ca. }37500\text{ für }r=0.7 \Rightarrow 10 \cdot \lg \ \eta_\text{K+E} \approx -89.2 \ {\rm dB},$
 +
 
 +
$\hspace{0.95cm}\text{weil das Intergral über }\vert H_{\rm E}(f) \vert^2\text{sehr groß ist. Nach Optimierung von }r=0.17 \text{ erhält man }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.$
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(11)'''&nbsp; Es gelten die Einstellungen von '''(10) und r= 0.17. Variieren Sie die Kabellänge bis l_{\rm blue} =10 \ \rm km.
 +
:Wie ändert sich der Maximalwert von \vert H_{\rm E}(f) \vert, der Kanal&ndash;Wirkungsgrad \eta_\text{K} und der optimale Roll&ndash;off&ndash;Faktor r_{\rm opt}?}}
 +
 
 +
 
 +
\Rightarrow\hspace{0.3cm}\text{Der  Maximalwert von } \vert H_{\rm E}(f) \vert \text{wird immer größer und }10 \cdot \lg \ \eta_\text{K}\text{ immer kleiner.}
 +
 
 +
$\hspace{0.95cm}\text{Bei 10 km Länge ist  } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ und } r_{\rm opt}=0.14\text{. Für }f_\star \approx 14.5\ {\rm MHz} \text{ ist } \vert H_{\rm E}(f = f_\star) = 352000 \cdot  \approx \vert H_{\rm E}(f =0)\vert$.
 +
 
 +
 
 +
 
 +
==Zur Handhabung des Applets==
 +
[[File:Applet_Kabeldaempfung_5_version2.png|left|600px]]
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Vorauswahl für blauen Parametersatz
 +
 
 +
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Eingabe der \alpha&ndash;Parameter per Slider
 +
 
 +
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Vorauswahl für roten Parametersatz
 +
 
 +
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Eingabe der k&ndash;Parameter per Slider
 +
 
 +
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Eingabe der Parameter f_{\rm Nyq} und r
 +
 
 +
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Auswahl für die graphische Darstellung
 +
 
 +
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Darstellung a_\text{K}(f), |H_\text{K}(f)|, |H_\text{E}(f)|, ...
 +
 
 +
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Skalierungsfaktor H_0 für $|H_\text{E}(f)|$, |H_\text{E}(f)|^2
 +
 
 +
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Auswahl der Frequenz f_\star für Numerikausgabe
 +
 
 +
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Numerikausgabe für blauen Parametersatz
 +
 
 +
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Numerikausgabe für roten Parametersatz
 +
 
 +
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Ausgabe Systemwirkungsgrad \eta_\text{K+E} in dB
 +
 
 +
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Store & Recall von Einstellungen
 +
 
 +
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Bereich für die Versuchsdurchführung 
 +
 
 +
&nbsp; &nbsp; '''(O)''' &nbsp; &nbsp; Variation der grafischen Darstellung:\hspace{0.5cm}"+" (Vergrößern),
 +
 
 +
\hspace{0.5cm} "-" (Verkleinern)
 +
 
 +
\hspace{0.5cm} "$\rm o$" (Zurücksetzen)
  
 +
\hspace{0.5cm} "\leftarrow" (Verschieben nach links),  usw.
  
 +
'''Andere Möglichkeiten zur Variation der grafischen Darstellung''':
 +
*Gedrückte Shifttaste und Scrollen:  Zoomen im Koordinatensystem,
 +
*Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
  
==Vorgeschlagene Parametersätze==  
+
==Über die Autoren==
 +
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
 +
*Die erste Version wurde 2009 von [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Sebastian_Seitz_.28Diplomarbeit_LB_2009.29|Sebastian Seitz]] im Rahmen seiner Diplomarbeit erstellt (Betreuer: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] und [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_Übertragungstechnik#Dr.-Ing._Bernhard_G.C3.B6bel_.28bei_L.C3.9CT_von_2004-2010.29|Bernhard Göbel]]).
 +
*2018 wurde das Programm  von [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Jimmy_He_.28Bachelorarbeit_2018.29|Jimmy He]]  (Bachelorarbeit, Betreuer: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] )  auf  "HTML5" umgesetzt und neu gestaltet.
  
1. Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a_0=20, a_1=0, a_2=0: <br>
 
Konstante Werte a_K=20 dB und \left| H_K(f)\right|=0.1. Nur Ohmsche Verluste werden berücksichtigt. <br>
 
2. Parameter wie (1), aber zusätzlich a_1=1 dB/(km &middot; MHz):<br>
 
Linearer Anstieg von a_K(f) zwischen 20 dB und 50 dB, \left| H_K(f)\right| fällt beidseitig exponentiell ab.<br>
 
3. Parameter wie (1), aber a_0=0, a_1=0, a_2=1 dB/(km &middot; MHz<sup>1/2</sup>).<br>
 
a_K(f) und \left| H_K(f)\right| werden ausschließlich durch den Skineffekt bestimmt. a_K(f) ist proportional zu f^{1/2}.<br>
 
4. Parameter wie (1), aber nun mit der Einstellung &bdquo;Koaxialkabel 2.6/9.5 mm&ldquo; (Normalkoaxialkabel):<br>
 
Es überwiegt der Skineffekt; a_k (f=30 MHz)=13.05 dB; ohne a_0: 13.04 dB, ohne a_1=12.92 dB.<br>
 
5. Parameter wie (1), aber nun mit der Einstellung &bdquo;Koaxialkabel 1.2/4.4 mm&ldquo; (Kleinkoaxialkabel):<br>
 
Wieder überwiegt der Skineffekt; a_k (f=30 MHz)=28.66 dB; ohne a_0: 28.59 dB, ohne a_1=28.48 dB.<br>
 
6. Nur roter Parametersatz, l=1 km, b=30 MHz, r=0, Einstellung &bdquo;Zweidrahtleitung 0.4 mm&ldquo;.<br>
 
Skineffekt ist auch hier dominant; a_k (f=30 MHz)=111.4 dB; ohne k_1: 106.3 dB.<br>
 
7. Parameter wie (6), aber nun Halbierung der Kabellänge (l=0.5 km):<br>
 
Auch die Dämpfungswerte werden halbiert: a_k (f=30 MHz)=55.7 dB; ohne k_1: 53.2 dB.<br>
 
8. Parameter wie (7), dazu im blauen Parametersatz die umgerechneten Werte der Zweidrahtleitung:<br>
 
Sehr gute Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.4 dB.<br>
 
9. Parameter wie (8), aber nun Approximation auf die Bandbreite B=20 MHz:<br>
 
Noch bessere Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.15 dB.<br>
 
10. Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a_0=a_1=a_2=0; unten Darstellung \left| H_K(f)\right|^2:<br>
 
Im gesamten Bereich ist \left| H_K(f)\right|^2=1; der Integralwert ist somit 2B=60 (in MHz).<br>
 
11. Parameter wie (10), aber nun mit Einstellung &bdquo;Koaxialkabel 2.6/9.5 mm&ldquo; (Normalkoaxialkabel):<br>
 
\left| H_K(f)\right|^2 ist bei f=1 etwa 1 und steigt zu den Rändern bis ca. 20. Der Integralwert ist ca. 550.<br>
 
12. Parameter wie (11), aber nun mit der deutlich größeren Kabellänge l=5 km:<br>
 
Deutliche Verstärkung des Effekts; Anstieg bis ca. 3.35\cdot 10^6 am Rand und Integralwert 2.5\cdot 10^7.<br>
 
13. Parameter wie (12), aber nun mit Rolloff-Faktor r=0.5:<br>
 
Deutliche Abschwächung des Effekts; Anstieg bis ca. 5.25\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 1.07\cdot 10^6.<br>
 
14. Parameter wie (13), aber ohne Berücksichtigung der Ohmschen Verluste (a_0=0):<br>
 
Nahezu gleichbleibendes Ergebnis; Anstieg bis ca. 5.15\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 1.05\cdot 10^6.<br>
 
15. Parameter wie (14), aber auch ohne Berücksichtigung der Querverluste (a_1=0):<br>
 
Ebenfalls kein großer Unterschied; Anstieg bis ca. 4.74\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 0.97\cdot 10^6.<br>
 
16. Nur roter Parametersatz, l=1 km, B=30 MHz, r=0.5, Einstellung &bdquo;Zweidrahtleitung 0.4 mm&ldquo;:<br>
 
Anstieg bis ca. 3\cdot 10^8 (f ca. 23 MHz), Integralwert ca. 4.55\cdot 10^9; ohne k_1: 0.93\cdot 10^8 (f ca. 23 MHz) bzw. 1.41\cdot 10^9.<br>
 
  
{{Display}}
+
{{LntAppletLink|attenuationCopperCables_en}}

Latest revision as of 16:46, 28 May 2021

Open Applet in a new tab

Programmbeschreibung


Dieses Applet berechnet die Dämpfungsfunktion a_{\rm K}(f) von leitungsgebundenen Übertragungsmedien (jeweils mit der Kabellänge l):

  • Für Koaxialkabel verwendet man meist die Gleichung a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.
  • Dagegen werden Zweidrahtleitungen oft in der Form a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l dargestellt.
  • Realisiert ist auch die Umrechnung der (k_1, \ k_2, \ k_3)–Darstellung in die (\alpha_0, \ \alpha_1, \ \alpha_2)–Form für B = 30 \ \rm MHz und umgekehrt.


Außer der Dämpfungsfunktion a_{\rm K}(f) können graphisch dargestellt werden:

  • der zugehörige Betragsfrequenzgang \left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20},
  • der Entzerrer–Frequenzgang \left | H_{\rm E}(f)\right | = \left | H_{\rm CRO}(f) / H_{\rm K}(f)\right | , der zu einem Nyquist–Gesamtfrequenzgang H_{\rm CRO}(f) führt,
  • der entsprechende Betrags–Quadrat–Frequenzgang \left | H_{\rm E}(f)\right |^2 .


Das Integral über \left | H_{\rm E}(f)\right |^2 ist ein Maß für die Rauschüberhöhung des ausgewählten Nyquist–Gesamtfrequenzgangs und damit auch für zu erwartende Fehlerwahrscheinlichkeit. Aus dieser wird der Gesamt–Wirkungsgrad  \eta_\text{K+E} für Kanal und Entzerrer berechnet, der im Applet in \rm dB ausgegeben wird.


Durch Optimierung des Roll-off–Faktors r des Cosinus–Roll-off–Frequenzgangs H_{\rm CRO}(f) kommt man zum Kanal–Wirkungsgrad   \eta_\text{K}. Dieser gibt also die Verschlechterung des Gesamtsystems aufgrund der Dämpfungsfunktion a_{\rm K}(f) des Übertragungsmediums an.



Theoretischer Hintergrund


Betragsfrequenzgang und Dämpfungsfunktion

Es besteht folgender Zusammenhang zwischen dem Betragsfrequenzgang und der Dämpfungsfunktion:

\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.
  • Der Index "K" soll deutlich machen, dass das betrachtete LZI–System ein Kabel ist.
  • Bei der ersten Berechnungsvorschrift ist die Dämpfungsfunktion a_\text{K}(f) in \rm dB (Dezibel) einzusetzen.
  • Bei der zweiten Berechnungsvorschrift ist die Dämpfungsfunktion a_\text{K, Np}(f) in \rm Np (Neper) einzusetzen.
  • Es gelten folgende Umrechnungen \rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np bzw. \rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB.
  • In diesem Applet werden ausschließlich die dB–Werte verwendet.

Dämpfungsfunktion eines Koaxialkabels

Die Dämpfungsfunktion eines Koaxialkabels der Länge l wird in [Wel77][1] wie folgt angegeben:

a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.
  • Beachten Sie bitte den Unterschied zwischen der Dämpfungsfunktion a_{\rm K}(f) in \rm dB und den "alpha"–Koeffizienten \alpha_{\rm K}(f)=a_{\rm K}(f)/l mit anderen Pseudo–Einheiten.
  • Die Dämpfungsfunktion a_{\rm K}(f) ist direkt proportional zur Kabellänge l. Man bezeichnet den Quotienten a_{\rm K}(f)/l als "Dämpfungsmaß" oder "kilometrische Dämpfung".
  • Der frequenzunabhängige Anteil α_0 des Dämpfungsmaßes berücksichtigt die Ohmschen Verluste ("Leitungsverluste").
  • Der frequenzproportionale Anteil α_1 · f des Dämpfungsmaßes ist auf die Ableitungsverluste ("Querverluste") zurückzuführen.
  • Der dominante Anteil α_2 geht auf den Skineffekt zurück, der bewirkt, dass bei höherfrequentem Wechselstrom die Stromdichte im Leiterinneren niedriger ist als an der Oberfläche. Dadurch steigt der Widerstandsbelag einer elektrischen Leitung mit der Wurzel aus der Frequenz an.


Die Konstanten für das Normalkoaxialkabel mit 2.6 mm Innendurchmesser und 9.5 mm Außendurchmesser   ⇒  kurz Coax (2.6/9.5 mm) lauten:

\alpha_0 = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.

Entsprechend gilt für das Kleinkoaxialkabel   ⇒  kurz Coax (1.2/4.4 mm):

\alpha_0 = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.


Diese Werte können aus den geometrischen Abmessungen der Kabel berechnet werden und wurden durch Messungen am Fernmeldetechnischen Zentralamt in Darmstadt bestätigt – siehe [Wel77][1] . Sie gelten für eine Temperatur von 20°C (293 K) und Frequenzen größer als 200 kHz.


Dämpfungsfunktion einer Zweidrahtleitung

Die Dämpfungsfunktion einer Zweidrahtleitung (englisch: Two–wired Line) der Länge l wird in [PW95][2] wie folgt angegeben:

a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.

Dieser Funktionsverlauf ist nicht direkt interpretierbar, sondern es handelt sich um eine phänomenologische Beschreibungsform.

Ebenfalls in [PW95][2]findet man die aus Messergebnissen ermittelten Konstanten für verschiedene Leitungsdurchmesser d:

  • d = 0.35 \ {\rm mm}:   k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62,
  • d = 0.40 \ {\rm mm}:   k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59,
  • d = 0.50 \ {\rm mm}:   k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60,
  • d = 0.60 \ {\rm mm}:   k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61.


Man erkennt aus diesen Zahlenwerten:

  • Dämpfungsmaß α(f) und Dämpfungsfunktion a_{\rm K}(f) = α(f) · l hängen signifikant vom Leitungsdurchmesser ab. Die seit 1994 verlegten Kabel mit d = 0.35 mm und d = 0.5 mm haben etwa ein um 10\% größeres Dämpfungsmaß als die älteren Leitungen mit d = 0.4bzw. 0.6 mm.
  • Dieser mit den Herstellungs– und Verlegungskosten begründete kleinere Durchmesser vermindert allerdings die Reichweite l_{\rm max} der auf diesen Leitungen eingesetzten Übertragungssysteme signifikant, so dass im schlimmsten Fall teuere Zwischenregeneratoren eingesetzt werden müssen.
  • Die heute üblichen Übertragungsverfahren für Kupferleitungen belegen allerdings nur ein relativ schmales Frequenzband, zum Beispiel sind dies bei ISDN 120\ \rm kHz und bei DSL ca. 1100 \ \rm kHz. Für f = 1 \ \rm MHz beträgt das Dämpfungsmaß für ein 0.4 mm–Kabel etwa 20 \ \rm dB/km, so dass selbst bei einer Kabellänge von l = 4 \ \rm km der Dämpfungswert nicht über 80 \ \rm dB liegt.


Umrechnung zwischen k– und \alpha– Parametern

Es besteht die Möglichkeit, die k–Parameter des Dämpfungsmaßes   ⇒   \alpha_{\rm I} (f) in entsprechende \alpha–Parameter   ⇒   \alpha_{\rm II} (f) umzurechnen:

\alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm mit} \hspace{0.15cm} f_0 = 1\,{\rm MHz},
\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}.

Als Kriterium dieser Umrechnung gehen wir davon aus, dass die quadratische Abweichung dieser beiden Funktionen innerhalb einer Bandbreite B minimal ist:

\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .

Es ist offensichtlich, dass α_0 = k_1 gelten wird. Die Parameter α_1 und α_2 sind von der zugrundegelegten Bandbreite B abhängig und lauten:

\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}

In der Gegenrichtung lautet die Umrechnungsvorschrift für den Exponenten:

k_3 = \frac{A + 0.5} {A +1}, \hspace{0.2cm}\text{Hilfsgröße: }A = \frac{2} {3} \cdot \frac{\alpha_1 \cdot \sqrt{f_0}}{\alpha_2} \cdot \sqrt{B/f_0}.

Mit diesem Ergebnis lässt sich k_2 mit jeder der oberen Gleichungen angeben.

\text{Beispiel 1:}  Im Folgenden verwenden wir die Normierunggröße f_0 = 1 \ \rm MHz.

  • Für k_3 = 1 (frequenzproportionales Dämpfungsmaß) ergeben sich folgerichtig   \alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 = {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .
  • Für k_3 = 0.5 (entsprechend Skineffekt) erhält man folgende Koeffizienten:   \alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.
  • Für k_3 < 0.5 ergibt sich ein negatives \alpha_1. Umrechnung ist nur für 0.5 \le k_3 \le 1 möglich.
  • Für 0.5 \le k_3 \le ergeben sich Koeffizienten \alpha_1 > 0 und \alpha_2 > 0, die auch von B/f_0 abhängen.
  • Aus \alpha_1 = 0.3\, {\rm dB}/ ({\rm km \cdot MHz}) \hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 3\, {\rm dB}/ ({\rm km \cdot \sqrt{MHz} })\hspace{0.05cm},\hspace{0.2cm}B = 30 \ \rm MHz folgt k_3 = 0.63 und k_2 = 2.9 \ \rm dB/km.




Zum Kanaleinfluss auf die binäre Nyquistentzerrung

Vereinfachtes Blockschaltbild des optimalen Nyquistentzerrers

Wir gehen vom skizzierten Blockschaltbild aus. Zwischen der Diracquelle und dem Entscheider liegen die Frequenzgänge für Sender  ⇒  H_{\rm S}(f), Kanal  ⇒  H_{\rm K}(f) und Empfänger   ⇒  H_{\rm E}(f).

In diesem Applet

  • vernachlässigen wir den Einfluss der Sendeimpulsform   ⇒   H_{\rm S}(f) \equiv 1   ⇒   diracförmiges Sendesignal s(t),
  • setzen ein binäres Nyquistsystem mit Cosinus–Roll-off um die Nyquistfrequenz f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T) voraus:
H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).
Frequenzgang mit Cosinus–Roll-off

Das bedeutet: Das erste Nyquistkriterium wird erfüllt  ⇒   zeitlich aufeinander folgende Impulse stören sich nicht gegenseitig   ⇒   es gibt keine Impulsinterferenzen (englisch: Intersymbol Interference, ISI).

Bei weißem Rauschen wird somit die Übertragungsqualität allein durch die Rauschleistung vor dem Empfänger bestimmt:

P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.


Die kleinstmögliche Rauschleistung ergibt sich bei idealem Kanal   ⇒   H_{\rm K}(f) \equiv 1 und gleichzeitig dem Frequenzgang H_{\rm CRO}(f) mit Roll-off–Faktor r = 1 im Bereich |f| \le 2 \cdot f_{\rm Nyq} (siehe Skizze):

P_\text{N, min} = P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1; \ \text{ Roll-off–Faktor } r=r_{\rm opt} =1 \big ] = N_0 \cdot 3/4 \cdot f_{\rm Nyq} .

\text{Definitionen:} 

  • Als Gütekriterium für ein gegebenes System verwenden wir den Gesamt–Wirkungsgrad:
\eta_\text{K+E} = \frac{P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=r_{\rm opt} =1 \big ]}{P_{\rm N} \ \big [\text{gegebenes System: Kanal }H_{\rm K}(f), \ \text{Roll-off-Faktor }r \big ]} =\left [ \frac{1}{3/4 \cdot f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \right ]^{-1}\le 1.
Diese Systemgröße wird im Applet für beide Parametersätze in logarithmierter Form angegeben:   10 \cdot \lg \ \eta_\text{K+E} \le 0 \ \rm dB.
  • Durch Variation und Optimierung des Roll-off-Faktors r erhält man den Kanal–Wirkungsgrad:
\eta_\text{K} = \max_{0 \le r \le 1} \ \eta_\text{K+E} .


Betrags–Quadrat–Frequenzgang \left \vert H_{\rm E}(f)\right \vert ^2

\text{Beispiel 2:}  Die Grafik zeigt den Betrags–Quadrat–Frequenzgang \left \vert H_{\rm E}(f)\right \vert ^2 mit \left \vert H_{\rm E}(f)\right \vert = H_{\rm CRO}(f) / \left \vert H_{\rm K}(f)\right \vert für folgende Randbedingungen:

  • Dämpfungsfunktion des Kanals:   a_{\rm K}(f) = 1 \ {\rm dB} \cdot \sqrt{f/\ {\rm MHz} },
  • Nyquist–Frequenz: :   f_{\rm Nyq} = 20 \ {\rm MHz}, Roll-off-Faktor r = 0.5


Daraus ergeben sich folgende Konsequenzen:

  • Im Bereich bis f_{1} = 10 \ {\rm MHz} ist H_{\rm CRO}(f) = 1   ⇒   \left \vert H_{\rm E}(f)\right \vert ^2 = \left \vert H_{\rm K}(f)\right \vert ^{-2} (siehe gelbe Hinterlegung).
  • Erst im Bereich von f_{1} bis f_{2} = 30 \ {\rm MHz} ist die Flanke von H_{\rm CRO}(f) wirksam und \left \vert H_{\rm E}(f)\right \vert ^2 wird immer kleiner.
  • Das Maximum von \left \vert H_{\rm E}(f_{\rm max})\right \vert ^2 bei f_{\rm max} \approx 11.5 \ {\rm MHz} ist mehr als doppelt so groß wie \left \vert H_{\rm E}(f = 0)\right \vert ^2 = 1.
  • Das Integral über \left \vert H_{\rm E}(f)\right \vert ^2 ist ein Maß für die wirksame Rauschleistung. Diese ist im Beispiel um den Faktor 4.6 größer als die minimale Rauschleistung (für a_{\rm K}(f) = 0 \ {\rm dB} und r=1)   ⇒   10 \cdot \lg \ \eta_\text{K+E} \approx - 6.6 \ {\rm dB}.


Versuchsdurchführung

Applet Kabeldaempfung 6 version1.png
  • Wählen Sie zunächst die Nummer 1 ... 11 der zu bearbeitenden Aufgabe.
  • Der Aufgabentext wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von "Hide solution".
  • Aufgabenstellung und Lösung in Englisch.


Die Nummer 0 entspricht einem "Reset":

  • Gleiche Einstellung wie beim Programmstart.
  • Ausgabe eines "Reset–Textes" mit weiteren Erläuterungen zum Applet.


In der folgenden Beschreibung bezeichnet Blue den linken Parametersatz (im Applet blau markiert) Red den rechten Parametersatz (im Applet rot markiert). Alle Angaben mit Hochkomma sind ohne Einheit, zum Beispiel steht {\alpha_2}' =2   für   \alpha_2 =2\, {\rm dB} / ({\rm km \cdot \sqrt{MHz} }).


(1)  Setzen Sie Blue zunächst auf \text{Coax (1.2/4.4 mm)} und anschließend auf \text{Coax (2.6/9.5 mm)}. Die Kabellänge sei jeweils l_{\rm Blue}= 5\ \rm km.

Betrachten und Interpretieren Sie a_{\rm K}(f) und \vert H_{\rm K}(f) \vert, insbesondere die Funktionswerte a_{\rm K}(f = f_\star = 30 \ \rm MHz) und \vert H_{\rm K}(f = 0) \vert.


\Rightarrow\hspace{0.3cm}\text{Näherungsweise steigt die Dämpfungsfunktion mit }\sqrt{f}\text{ und der Betragsfrequenzgang fällt ähnlich einer Exponentialfunktion};

\hspace{1.15cm}\text{Coax (1.2/4.4 mm): }a_{\rm K}(f = f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.

\hspace{1.15cm}\text{Coax (2.6/9.5 mm): }a_{\rm K}(f = f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;


(2)  Für Blue gelte \text{Coax (2.6/9.5 mm)} und l_{\rm Blue} = 5\ \rm km. Wie wird a_{\rm K}(f =f_\star = 30 \ \rm MHz) von \alpha_0, \alpha_1 und \alpha_2 beeinflusst?


\Rightarrow\hspace{0.3cm}\text{Entscheidend ist }\alpha_2\text{ (Skineffekt). Die Beitrag von } \alpha_0\text{ ist nur ca. 0.1 dB und der von }\alpha_1 \text{ nur ca. 0.6 dB.}


(3)  Setzen Sie zusätzlich Red auf \text{Two–wired Line (0.5 mm)} und l_{\rm Red} = 1\ \rm km. Welcher Wert ergibt sich für a_{\rm K}(f =f_\star= 30 \ \rm MHz)?

Bis zu welcher Länge l_{\rm Red} ist die rote Dämpfungsfunktion vergleichbar mit der blauen?


\Rightarrow\hspace{0.3cm}\text{Für die rote Kurve gilt: }a_{\rm K}(f = f_\star) = 87.5 {\ \rm dB} \text{. Obige Bedingung wird erfüllt für }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f = f_\star) = 61.3 {\ \rm dB}.


(4)  Setzen Sie Red auf {k_1}' = 0, {k_2}' = 10, {k_3}' = 0.75, {l_{\rm red} } = 1 \ \rm km und variieren Sie den Parameter 0.5 \le k_3 \le 1.

Was erkennt man anhand von a_{\rm K}(f) und \vert H_{\rm K}(f) \vert?


\Rightarrow\hspace{0.3cm}\text{Bei festem }k_2\text {wird }a_{\rm K}(f)\text{ mit größerem }k_3\text{ immer größer und }\vert H_{\rm K}(f) \vert \text{ nimmt immer schneller ab. Mit }k_3 =1: a_{\rm K}(f)\text{ steigt linear.}

\hspace{1.15cm}\text{Mit }k_3 \to 0.5\text{ wird die Dämpfungsfunktion wie beim Koaxialkabel immer mehr durch den Skineffekt bestimmt.}


(5)  Setzen Sie Red auf \text{Two–wired Line (0.5 mm)} und Blue auf \text{Conversion of Red}. Es gelte l_{\rm Red} = l_{\rm Blue} = 1\ \rm km.

Betrachten und interpretieren Sie die dargestellten Funktionsverläufe für a_{\rm K}(f) und \vert H_{\rm K}(f) \vert.


\Rightarrow\hspace{0.3cm}\text{Sehr gute Approximation der Zweidrahtleitung durch den blauen Parametersatz, sowohl bezüglich }a_{\rm K}(f) \text{ als auch }\vert H_{\rm K}(f) \vert.

\hspace{1.15cm}\text{Die errechneten Parameterwerte nach der Konvertierung sind }{\alpha_0}' = {k_1}' = 4.4, \ {\alpha_1}' = 0.76, \ {\alpha_2}' = 11.12.


(6)  Es gelten die Einstellungen von (5). Welche Anteile der Dämpfungsfunktion gehen auf Ohmschen Verlust, Querverluste und Skineffekt zurück?


\Rightarrow\hspace{0.3cm}\text{Lösung anhand '''Blue''': }a_{\rm K}(f = f_\star= 30 \ {\rm MHz}) = 88.1\ {\rm dB}, \hspace{0.2cm}\text{ohne }\alpha_0\text{: }83.7\ {\rm dB}, \hspace{0.2cm}\text{ohne }\alpha_0 \text{ und } \alpha_1\text{: }60.9\ {\rm dB}.

\hspace{1.15cm}\text{Bei einer Zweidrahtleitung ist der Einfluss der Längs– und der Querverluste signifikant größer als bei einem Koaxialkabel.}


(7)  Setzen Sie Blue auf {\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0 und Red auf {k_1}' = 2, {k_2}' = 0, {l_{\rm red} } = 1 \ \rm km. Zusätzlich gelte {f_{\rm Nyq} }' =15 und r= 0.5.

Wie groß ist jeweils der Gesamt–Wirkungsgrad \eta_\text{K+E} und der Kanal–Wirkungsgrad \eta_\text{K}?


\Rightarrow\hspace{0.3cm}\text{Es gilt }10 \cdot \lg \ \eta_\text{K+E} = -0.7\ \ {\rm dB}\text{ (Blue: ideales System) und }10 \cdot \lg \ \eta_\text{K+E} = -2.7\ \ {\rm dB}\text{ (Red: nur Gleichsignaldämpfung)}.

\hspace{0.95cm}\text{Der bestmögliche Rolloff–Faktor ist }r = 1.\text{ Somit ist }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) bzw. }10 \cdot \lg \ \eta_\text{K} = -2\ {\rm dB}\text{ (Red)}.


(8)  Es gilt die Einstellung von (7). Mit welcher Sendeleistung P_{\rm red} in Bezug zu P_{\rm blue} erreichen beide Systeme gleiche Fehlerwahrscheinlichkeit?


\Rightarrow\hspace{0.3cm}\text{Es muss gelten: }10 \cdot \lg \ P_{\rm red}/P_{\rm blue} =2 \ {\rm dB} \ \ \text{ ⇒ } \ \ P_{\rm red}/P_{\rm blue} = 10^{0.2} = 1.585.


(9)  Setzen Sie Blue auf {\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2 und Red auf "Inactive". Zusätzlich gelte {f_{\rm Nyq} }' =15 und r= 0.7.

Welchen Verlauf hat \vert H_{\rm E}(f) \vert? Wie groß ist sind Gesamt–Wirkungsgrad \eta_\text{K+E} und Kanal–Wirkungsgrad \eta_\text{K}?


\Rightarrow\hspace{0.3cm}\text{Für } f < 7.5 {\ \rm MHz}\text{ ist } \vert H_{\rm E}(f) \vert = \vert H_{\rm K}(f) \vert ^{-1}.\text{ Für }(f > 22.5 {\ \rm MHz)}\text{ ist: }\vert H_{\rm E}(f) \vert = 0.\text{ Dazwischen Einfluss der CRO–Flanke.}

\hspace{0.95cm}\text{Der bestmögliche Rolloff–Faktor }r = 0.7\text{ ist bereits eingestellt: }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.


(10)  Setzen Sie Blue auf {\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8 sowie Red auf "Inactive". Zusätzlich gelte {f_{\rm Nyq} }' =15 und r= 0.7.

Welchen Wert hat \vert H_{\rm E}(f = 0) \vert? Was ist der Maximalwert von \vert H_{\rm E}(f) \vert? Wie groß ist ist der Kanal–Wirkungsgrad \eta_\text{K}?


\Rightarrow\hspace{0.3cm}\text{Es gilt }\vert H_{\rm E}(f = 0) \vert = \vert H_{\rm E}(f = 0) \vert ^{-1}= 1 \text{ und das Maximum von } \vert H_{\rm E}(f) \vert \text{ ist ca. }37500\text{ für }r=0.7 \Rightarrow 10 \cdot \lg \ \eta_\text{K+E} \approx -89.2 \ {\rm dB},

\hspace{0.95cm}\text{weil das Intergral über }\vert H_{\rm E}(f) \vert^2\text{sehr groß ist. Nach Optimierung von }r=0.17 \text{ erhält man }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.


(11)  Es gelten die Einstellungen von (10) und r= 0.17. Variieren Sie die Kabellänge bis l_{\rm blue} =10 \ \rm km.

Wie ändert sich der Maximalwert von \vert H_{\rm E}(f) \vert, der Kanal–Wirkungsgrad \eta_\text{K} und der optimale Roll–off–Faktor r_{\rm opt}?


\Rightarrow\hspace{0.3cm}\text{Der Maximalwert von } \vert H_{\rm E}(f) \vert \text{wird immer größer und }10 \cdot \lg \ \eta_\text{K}\text{ immer kleiner.}

\hspace{0.95cm}\text{Bei 10 km Länge ist } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ und } r_{\rm opt}=0.14\text{. Für }f_\star \approx 14.5\ {\rm MHz} \text{ ist } \vert H_{\rm E}(f = f_\star) = 352000 \cdot \approx \vert H_{\rm E}(f =0)\vert.


Zur Handhabung des Applets

Applet Kabeldaempfung 5 version2.png

    (A)     Vorauswahl für blauen Parametersatz

    (B)     Eingabe der \alpha–Parameter per Slider

    (C)     Vorauswahl für roten Parametersatz

    (D)     Eingabe der k–Parameter per Slider

    (E)     Eingabe der Parameter f_{\rm Nyq} und r

    (F)     Auswahl für die graphische Darstellung

    (G)     Darstellung a_\text{K}(f), |H_\text{K}(f)|, |H_\text{E}(f)|, ...

    (H)     Skalierungsfaktor H_0 für |H_\text{E}(f)|, |H_\text{E}(f)|^2

    (I)     Auswahl der Frequenz f_\star für Numerikausgabe

    (J)     Numerikausgabe für blauen Parametersatz

    (K)     Numerikausgabe für roten Parametersatz

    (L)     Ausgabe Systemwirkungsgrad \eta_\text{K+E} in dB

    (M)     Store & Recall von Einstellungen

    (N)     Bereich für die Versuchsdurchführung

    (O)     Variation der grafischen Darstellung:\hspace{0.5cm}"+" (Vergrößern), \hspace{0.5cm} "-" (Verkleinern) \hspace{0.5cm} "\rm o" (Zurücksetzen) \hspace{0.5cm} "\leftarrow" (Verschieben nach links), usw.

Andere Möglichkeiten zur Variation der grafischen Darstellung:

  • Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,
  • Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.

Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.


Open Applet in a new tab

  1. Jump up to: 1.0 1.1 Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.
  2. Jump up to: 2.0 2.1 Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.