Difference between revisions of "Aufgaben:Exercise 2.8: Huffman Application for a Markov Source"

From LNTwww
Line 160: Line 160:
  
  
[[Category:Information Theory: Exercises|^2.3 Entropiecodierung nach Huffman^]]
+
[[Category:Information Theory: Exercises|^2.3 Entropy Coding according to Huffman^]]

Revision as of 14:00, 16 July 2021

Binäre symmetrische Markovquelle

Wir betrachten die binäre symmetrische Markovquelle entsprechend der Grafik, die durch den einzigen Parameter

$$q = {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y})$$

vollständig beschrieben wird.

  • Die angegebenen Quellensymbolfolgen gelten für die bedingten Wahrscheinlichkeiten  $q = 0.2$  bzw.  $q = 0.8$.
  • In der Teilaufgabe  (1)  ist zu klären, welche Symbolfolge – die rote oder die blaue – mit  $q = 0.2$  und welche mit  $q = 0.8$  generiert wurde.


Die Eigenschaften von Markovquellen werden im Kapitel  Nachrichtenquellen mit Gedächtnis  ausführlich beschrieben.  Aufgrund der hier vorausgesetzten Symmetrie bezüglich der Binärsymbole  $\rm X$  und  $\rm Y$  ergeben sich einige gravierende Vereinfachungen, wie in der  Aufgabe 1.5Z  hergeleitet wird:

  • Die Symbole  $\rm X$  und  $\rm Y$  sind gleichwahrscheinlich, das heißt, es gilt  $p_{\rm X} = p_{\rm Y} = 0.5$. 
    Damit lautet die erste Entropienäherung:   $H_1 = 1\,\,{\rm bit/Quellensymbol}\hspace{0.05cm}. $
  • Die Entropie der Markovquelle ergibt sich sowohl für  $q = 0.2$  als auch für  $q = 0.8$  zu
$$H = q \cdot {\rm log_2}\hspace{0.15cm}\frac{1}{q} + (1-q) \cdot {\rm log_2}\hspace{0.15cm}\frac{1}{1-q} = 0.722\,\,{\rm bit/Quellensymbol}\hspace{0.05cm}.$$
  • Bei Markovquellen sind alle Entropienäherungen  $H_k$  mit Ordnung  $k \ge 2$  durch  $H_1$  und  $H = H_{k \to \infty}$  bestimmt:
$$H_k = {1}/{k}\cdot \big [ H_1 + H \big ] \hspace{0.05cm}.$$
  • Die folgenden Zahlenwerte gelten wieder für  $q = 0.2$  und  $q = 0.8$  gleichermaßen:
$$H_2 = {1}/{2}\cdot \big [ H_1 + H \big ] = 0.861\,\,{\rm bit/Quellensymbol}\hspace{0.05cm},$$
$$H_3 = {1}/{3} \cdot \big [ H_1 + 2H \big ] = 0.815\,\,{\rm bit/Quellensymbol}\hspace{0.05cm}.$$

In dieser Aufgabe soll der Huffman–Algorithmus auf  $k$–Tupel angewandt werden, wobei wir uns auf  $k = 2$  und  $k = 3$  beschränken.





Hinweise:



Fragebogen

1

Welche der vorne angegebenen Beispielfolgen gilt für  $q = 0.8$?

die rote Quellensymbolfolge  1,
die blaue Quellensymbolfolge  2.

2

Welche der folgenden Aussagen treffen zu?

Auch die direkte Anwendung von Huffman ist hier sinnvoll.
Huffman macht bei Bildung von Zweiertupeln  $(k = 2)$  Sinn.
Huffman macht bei Bildung von Dreiertupeln  $(k = 3)$  Sinn.

3

Wie lauten die Wahrscheinlichkeiten der Zweiertupel  $(k = 2)$  für  $\underline{q = 0.8}$?

$p_{\rm A} = \rm Pr(XX)\ = \ $

$p_{\rm B} = \rm Pr(XY)\ = \ $

$p_{\rm C} = \rm Pr(YX)\ = \ $

$p_{\rm D} = \rm Pr(YY)\ = \ $

4

Ermitteln Sie den Huffman–Code für  $\underline{k = 2}$.  Wie groß ist in diesem Fall die mittlere Codewortlänge?

$L_{\rm M} \ = \ $

$\ \rm bit/Quellensymbol$

5

Welche Schranke ergibt sich für die mittlere Codewortlänge, wenn Zweiertupel gebildet werden  $(k = 2)$? Interpretation.

$L_{\rm M} \ge H_1 = 1.000$  bit/Quellensymbol,
$L_{\rm M} \ge H_2 \approx 0.861$  bit/Quellensymbol,
$L_{\rm M} \ge H_3 \approx 0.815$  bit/Quellensymbol,
$L_{\rm M} \ge H_{k \to \infty} \approx 0.722$  bit/Quellensymbol,
$L_{\rm M} \ge 0.5$  bit/Quellensymbol.

6

Berechnen Sie die Wahrscheinlichkeiten der Dreiertupel  $(k = 3)$  für  $\underline{q = 0.8}$?

$p_{\rm A} = \rm Pr(XXX)\ = \ $

$p_{\rm B} = \rm Pr(XXY)\ = \ $

$p_{\rm C} = \rm Pr(XYX)\ = \ $

$p_{\rm D} = \rm Pr(XYY)\ = \ $

$p_{\rm E} = \rm Pr(YXX)\ = \ $

$p_{\rm F} = \rm Pr(YXY)\ = \ $

$p_{\rm G} = \rm Pr(YYX)\ = \ $

$p_{\rm H} = \rm Pr(YYY)\ = \ $

7

Ermitteln Sie den Huffman–Code für $\underline{k = 3}$.  Wie groß ist in diesem Fall die mittlere Codewortlänge?

$L_{\rm M} \ = \ $

$\ \rm bit/Quellensymbol$


Musterlösung

(1)  Richtig ist der Lösungsvorschlag 2:

  • Bei der blauen Quellensymbolfolge  2  erkennt man sehr viel weniger Symbolwechsel als in der roten Folge.
  • Die Symbolfolge  2  wurde mit dem Parameter  $q = {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.8$  erzeugt und die rote Symbolfolge  1  mit  $q = 0.2$.


(2)  Richtig sind die Antworten 2 und 3.:

  • Da hier die Quellensymbole  $\rm X$  und  $\rm Y$  als gleichwahrscheinlich angenommen wurden, macht die direkte Anwendung von Huffman keinen Sinn.
  • Dagegen kann man die inneren statistischen Bindungen der Markovquelle zur Datenkomprimierung nutzen, wenn man  $k$–Tupel bildet  $(k ≥ 2)$.
  • Je größer  $k$  ist, desto mehr nähert sich die mittlere Codewortlänge  $L_{\rm M}$  der Entropie  $H$.


(3)  Die Symbolwahrscheinlichkeiten sind  $p_{\rm X} = p_{\rm Y} = 0.5$.  Damit erhält man für die Zweiertupel:

$$p_{\rm A} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XX}) = p_{\rm X} \cdot {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = 0.5 \cdot q = 0.5 \cdot 0.8 \hspace{0.15cm}\underline{ = 0.4} \hspace{0.05cm},$$
$$p_{\rm B} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XY}) = p_{\rm X} \cdot {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm X}) = 0.5 \cdot (1-q)= 0.5 \cdot 0.2 \hspace{0.15cm}\underline{ = 0.1} \hspace{0.05cm},$$
$$p_{\rm C} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm YX}) = p_{\rm Y} \cdot {\rm Pr}(\boldsymbol{\rm X}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.5 \cdot (1-q)= 0.5 \cdot 0.2 \hspace{0.15cm}\underline{ = 0.1} \hspace{0.05cm},$$
$$p_{\rm D} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm YY}) = p_{\rm Y} \cdot {\rm Pr}(\boldsymbol{\rm Y}\hspace{0.05cm}|\hspace{0.05cm}\boldsymbol{\rm Y}) = 0.5 \cdot q = 0.5 \cdot 0.8\hspace{0.15cm}\underline{ = 0.4} \hspace{0.05cm}.$$


Zur Huffman–Codierung für $k = 2$

(4)  Nebenstehender Bildschirmabzug des (früheren) SWF–Programms  Shannon–Fano– und Huffman–Codierung  zeigt die Konstruktion des Huffman–Codes für  $k = 2$  mit den soeben berechneten Wahrscheinlichkeiten.

  • Damit gilt für die mittlere Codewortlänge:
$$L_{\rm M}\hspace{0.01cm}' = 0.4 \cdot 1 + 0.4 \cdot 2 + (0.1 + 0.1) \cdot 3 = 1.8\,\,{\rm bit/Zweiertupel}$$
$$\Rightarrow\hspace{0.3cm}L_{\rm M} = {L_{\rm M}\hspace{0.01cm}'}/{2}\hspace{0.15cm}\underline{ = 0.9\,{\rm bit/Quellensymbol}}\hspace{0.05cm}.$$


(5)  Richtig iist der Lösungsvorschlag 2:

  • Nach dem Quellencodierungstheorem gilt  $L_{\rm M} ≥ H$.
  • Wendet man aber Huffman–Codierung an und lässt dabei Bindungen zwischen nicht benachbarten Symbolen außer Betracht  $(k = 2)$, so gilt als unterste Grenze der Codewortlänge nicht  $H = 0.722$, sondern  $H_2 = 0.861$  (auf den Zusatz bit/Quellensymbol wird für den Rest der Aufgabe verzichtet).
  • Das Ergebnis der Teilaufgabe  (4)  war  $L_{\rm M} = 0.9.$
  • Würde eine unsymmetrische Markovkette vorliegen und zwar derart, dass sich für die Wahrscheinlichkeiten  $p_{\rm A}$, ... , $p_{\rm D}$  die Werte  $50\%$,  $25\%$  und zweimal  $12.5\%$  ergeben würden, so käme man auf die mittlere Codewortlänge  $L_{\rm M} = 0.875$.
  • Wie die genauen Parameter dieser unsymmetrischen Markovquelle aussehen, weiß aber auch der Aufgabensteller (G. Söder) nicht.
  • Auch nicht, wie sich der Wert  $0.875$  auf  $0.861$  senken ließe. Der Huffman–Algorithmus ist hierfür jedenfalls ungeeignet.


(6)  Mit  $q = 0.8$  und  $1 - q = 0.2$  erhält man:

$$p_{\rm A} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XXX}) = 0.5 \cdot q^2 \hspace{0.15cm}\underline{ = 0.32} = p_{\rm H} = {\rm Pr}(\boldsymbol{\rm YYY})\hspace{0.05cm},$$
$$p_{\rm B} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XXY}) = 0.5 \cdot q \cdot (1-q) \hspace{0.15cm}\underline{ = 0.08}= p_{\rm G} = {\rm Pr}(\boldsymbol{\rm YYX}) \hspace{0.05cm},$$
$$p_{\rm C} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XYX}) = 0.5 \cdot (1-q)^2\hspace{0.15cm}\underline{ = 0.02} = p_{\rm F}= {\rm Pr}(\boldsymbol{\rm YXY}) \hspace{0.05cm},$$
$$p_{\rm D} \hspace{0.2cm} = \hspace{0.2cm} {\rm Pr}(\boldsymbol{\rm XYY}) = 0.5 \cdot (1-q) \cdot q \hspace{0.15cm}\underline{ = 0.08} = p_{\rm E} = {\rm Pr}(\boldsymbol{\rm YXX})\hspace{0.05cm}.$$


(7)  Der Bildschirmabzug des des (früheren) SWF–Programms  Shannon–Fano– und Huffman–Codierung  verdeutlicht die Konstellation des Huffman–Codes für  $k = 3$.  Damit erhält man für die mittlere Codewortlänge:

$$L_{\rm M}\hspace{0.01cm}' = 0.64 \cdot 2 + 0.24 \cdot 3 + 0.04 \cdot 5 = 2.52\,\,{\rm bit/Dreiertupel}\hspace{0.3cm} \Rightarrow\hspace{0.3cm}L_{\rm M} = {L_{\rm M}\hspace{0.01cm}'}/{3}\hspace{0.15cm}\underline{ = 0.84\,{\rm bit/Quellensymbol}}\hspace{0.05cm}.$$
Zur Huffman–Codierung für $k = 3$
  • Man erkennt die Verbesserung gegenüber der Teilaufgabe  (4).
  • Die für  $k = 2$  gültige Schranke  $H_2 = 0.861$  wird nun von der mittleren Codewortlänge  $L_{\rm M}$  unterschritten.
  • Die neue Schranke für  $k = 3$  ist  $H_3 = 0.815$.
  • Um die Quellenentropie  $H = 0.722$  zu erreichen  (besser gesagt:  diesem Endwert bis auf ein  $ε$  nahe zu kommen), müsste man allerdings unendlich lange Tupel bilden  $(k → ∞)$.