Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.5: Binary Markov Source"

From LNTwww
 
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Nachrichtenquellen mit Gedächtnis
+
{{quiz-Header|Buchseite=Information_Theory/Discrete_Sources_with_Memory
 
}}
 
}}
  

Latest revision as of 14:03, 10 August 2021

Binary Markov diagram

Exercise 1.4  has shown that the calculation of the entropy for a source with memory can be very time-consuming.  One must then first calculate (very many) entropy approximations  Hk  for  k–tuples and only then the source entropy can be determined with the boundary transition  k :

H=lim

Often,  H_k  tends only very slowly towards the limit  H.

The calculation process is drastically reduced if the message source has Markov properties.  The graphic shows the transition diagram for a binary Markov source with the two states (symbols)  \rm A  and  \rm B.

  • This is clearly determined by the two conditional probabilities  p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} = p  and  p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = q .
  • The other conditional probabilities  p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}  and  p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}  as well as the (unconditional) symbol probabilities  p_{\rm A}   and  p_{\rm B}  can be determined from this.


The entropy of the binary Markov chain  (with the unit "bit/symbol")  is then:

H = H_{\rm M} = p_{\rm AA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm BA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} + p_{\rm BB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}} \hspace{0.05cm}.

It should be noted that in the argument of the  "binary logarithm", the  conditional probabilities  p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}, ...   are to be used, while the  "Conditional Probabilities"  p_{\rm AA}p_{\rm AB}, ...   are to be used for the weighting.

Using the first order entropy approximation,

H_1 = p_{\rm A} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A}} + p_{\rm B} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B}} \hspace{0.5cm}({\rm unit\hspace{-0.1cm}: \hspace{0.1cm}bit/symbol})\hspace{0.05cm},

as well as the (actual) entropy  H = H_{\rm M}  given above, all further entropy approximations  (k = 2, 3, \text{...})  can also be given directly for a Markov source:

H_k = \frac{1}{k} \cdot \big [ H_{\rm 1} + (k-1) \cdot H_{\rm M} \big ] \hspace{0.05cm}.



Hints:

  • For the  (ergodic)  symbol probabilities of a first order Markov chain applies:
p_{\rm A} = \frac {p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} { p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} + p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} \hspace{0.05cm}, \hspace{0.3cm} p_{\rm B} = \frac {p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} { p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} + p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} \hspace{0.05cm}.



Questions

1

Give the transition probabilities for  p = 1/4  and  q = 1/2.

p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \ = \

p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \ = \

2

What are the  (unconditional)  symbol probabilities?  Let  p = 1/4  and  q = 1/2 still hold.

p_{\rm A} \ = \

p_{\rm B} \ = \

3

Give the corresponding first order entropy approximation.

H_1 \ = \

\ \rm bit/symbol

4

What is the entropy  H = H_{\rm M}  of this Markov source with  p = 1/4  and  q = 1/2?

H \ = \

\ \rm bit/symbol

5

Which entropy approximations  H_k  result from the Markov properties?

H_2 \ = \

\ \rm bit/symbol
H_3 \ = \

\ \rm bit/symbol
H_4 \ = \

\ \rm bit/symbol

6

What is the entropy  H = H_{\rm M}  of the Markov source with  p = 1/4  and  q = 3/4?

H \ = \

\ \rm bit/symbol


Solution

Markov diagram for tasks  (1), ... ,  (5)

After  \rm A ,   \rm A  and  \rm B  are equally probable.  After  \rm B ,   \rm B  occurs much more frequently than  \rm A .  The following applies to the transition probabilities

p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} = \hspace{0.1cm} 1 - p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}= 1 - q \hspace{0.15cm} \underline {= 0.5} \hspace{0.05cm},
p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.1cm} = \hspace{0.1cm} 1 - p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}= 1 - p \hspace{0.15cm} \underline {= 0.75} \hspace{0.05cm}.


(2)  According to the equations given:

p_{\rm A}= \frac{p}{p+q} = \frac{0.25}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.333} \hspace{0.05cm}, \hspace{0.5cm} p_{\rm B} = \frac{q}{p+q} = \frac{0.50}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.667} \hspace{0.05cm}.


(3)  With the probabilities calculated in the last sub-task:

H_{\rm 1} = H_{\rm bin}(p_{\rm A}) = 1/3 \cdot {\rm log}_2\hspace{0.01cm} (3) + 2/3 \cdot {\rm log}_2\hspace{0.01cm} (1.5) = 1.585 - 2/3\hspace{0.15cm} \underline {= 0.918 \,{\rm bit/symbol}} \hspace{0.05cm}.


(4)  The entropy of the Markov source is according to:

H = p_{\rm AA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm BA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} + p_{\rm BB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}} \hspace{0.05cm}.
  • For the composite probabilities holds:
p_{\rm AA} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = (1-q) \cdot \frac{p}{p+q} = \frac{1/2 \cdot 1/4}{3/4} = {1}/{6} \hspace{0.05cm},
p_{\rm AB} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = q \cdot \frac{p}{p+q} = \frac{1/2 \cdot 1/4}{3/4} = {1}/{6} \hspace{0.05cm},
p_{\rm BA} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = p \cdot \frac{q}{p+q} = p_{\rm AB} = {1}/{6} \hspace{0.05cm},
p_{\rm BB} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = (1-p) \cdot \frac{q}{p+q} = \frac{3/4 \cdot 1/2}{3/4} = {1}/{2}
\Rightarrow\hspace{0.3cm} H = 1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot {\rm log}_2\hspace{0.01cm} (4) + 1/2 \cdot {\rm log}_2\hspace{0.1cm} (4/3) = 10/6 - 1/2 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.875 \,{\rm bit/symbol}} \hspace{0.05cm}.


(5)  In general, with  H_{\rm M} = H  for  k–th entropy approximation:  

H_k = {1}/{k} \cdot [ H_{\rm 1} + (k-1) \cdot H_{\rm M}] \hspace{0.05cm}.
  • It follows that:
H_2 = {1}/{2} \cdot [ 0.918 + 1 \cdot 0.875] \hspace{0.15cm} \underline {= 0.897 \,{\rm bit/symbol}} \hspace{0.05cm},
H_3 = {1}/{3} \cdot [ 0.918 + 2 \cdot 0.875] \hspace{0.15cm} \underline {= 0.889 \,{\rm bit/symbol}} \hspace{0.05cm},
H_4 = {1}/{4} \cdot [ 0.918 + 3 \cdot 0.875] \hspace{0.15cm} \underline {= 0.886 \,{\rm bit/symbol}} \hspace{0.05cm}.


Markov diagram for subtask  (6)

(6)  With the new set of parameters  (p = 1/4, q = 3/4),  we obtain for the symbol probabilities:

p_{\rm A} = 1/4, \ p_{\rm B} = 3/4.
  • This special case thus leads to statistically independent symbols:
p_{\rm A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.05cm}, \hspace{0.2cm} p_{\rm B} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.05cm}.
  • Thus the entropy  H  is identical with the entropy approximation  H_1:
H = H_{\rm 1} = 1/4 \cdot {\rm log}_2\hspace{0.01cm} (4) + 3/4 \cdot {\rm log}_2\hspace{0.01cm} (4/3) = 2 - 0.75 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/Symbol}} \hspace{0.05cm}.
  • The entropy approximations  H_2H_3H_4,  ...  also yield the result  0.811 \, \rm bit/symbol.