Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Exercise 2.12: Run–Length Coding and Run–Length Limited Coding"

From LNTwww
Line 34: Line 34:
 
TEXT=RLLC Example:  We again assume the above sequence and the parameter  D=2 :
 
TEXT=RLLC Example:  We again assume the above sequence and the parameter  D=2 :
 
* Source symbol sequence:    ABAABAAAABBAAB...
 
* Source symbol sequence:    ABAABAAAABBAAB...
* RLC decimal sequence:        '''2; 3; 5; 1; 3;''' ...
+
* RLC decimal sequence:          '''2; 3; 5; 1; 3;''' ...
* RLLC decimal sequence: &nbsp;&nbsp;&nbsp; '''2;&nbsp; 3;&nbsp;'''<font color="#cc0000"><span style="font-weight: bold;"> S;</span></font>'''&nbsp;2;&nbsp; 1;&nbsp; 3;''' ...
+
* RLLC decimal sequence: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''2;&nbsp; 3;&nbsp;'''<font color="#cc0000"><span style="font-weight: bold;"> S;</span></font>'''&nbsp;2;&nbsp; 1;&nbsp; 3;''' ...
* RLLC binary sequence: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''01&prime;11&prime;''' <font color="#cc0000"><span style="font-weight: bold;">00&prime;</span></font>'''10&prime;01&prime;11&prime;'''...
+
* RLLC binary sequence: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''10&prime;11&prime;''' <font color="#cc0000"><span style="font-weight: bold;">00&prime;</span></font>'''10&prime;01&prime;11&prime;'''...
  
  
 
You can see:
 
You can see:
 
*The special character&nbsp; <b>S</b>&nbsp; is binary-coded here as&nbsp; <b>00</b>&nbsp;.&nbsp; This is only an example &ndash; it does not have to be like this.
 
*The special character&nbsp; <b>S</b>&nbsp; is binary-coded here as&nbsp; <b>00</b>&nbsp;.&nbsp; This is only an example &ndash; it does not have to be like this.
*Since with&nbsp; D=2&nbsp; for all real RLC values&nbsp; 1Li3&nbsp;, the decoder recognises the special character&nbsp; '''00'''.
+
*Since with&nbsp; D=2&nbsp; for all real RLC values&nbsp; 1Li3&nbsp;, the decoder recognizes the special character&nbsp; '''00'''.
 
*It replaces this again with&nbsp; 2D1&nbsp;  (three in the example)&nbsp; A&ndash;symbols.}}
 
*It replaces this again with&nbsp; 2D1&nbsp;  (three in the example)&nbsp; A&ndash;symbols.}}
  

Revision as of 18:10, 12 August 2021

Table on Run-Length Coding

We consider a binary source with the symbol set  A  and  B, where  B  however, occurs only very rarely.

  • Without source coding, exactly one bit would be needed per source symbol, and accordingly, for a source symbol sequence of length  N  would also apply to the coder symbol sequence  Nbits=N.
  • Entropy coding makes little sense here without further measures  (example:  combining several symbols into a tuple)  because of the unfavourable symbol probabilities.
  • The remedy is  Run-Length Coding  (RLC), which is described in the theory section under the link mentioned.  For example, for the symbol sequence   ABAABAAAABBAAB...   the corresponding output of  "Run–Length Coding":   2; 3; 5; 1; 3;...
  • Of course, the lengths  L1=2L2=3, ...  of the individual substrings, each separated by  B , must be represented in binary before transmission.  If one uses  D=3  (bit) for all  Li  one obtains the RLC binary symbol sequence
010'011'101'001'011'...

The graph shows the RLC result to be analysed.  Columns 2 and 3 show the substring lengths  Li  in binary and decimal, respectively, and column 4 shows them in cumulative form  (values from column 3 added up).

  • One problem of  "Run-Length Coding"  (RLC) is the unlimited range of values of the quantities  Li.  With  D=3,  no value  Li>7  can be represented and with  D=2,  the restriction is  1Li3.
  • The problem is circumvented with  "Run–Length Limited Coding"  (RLLC).  If a value is  Li2D,  one replaces  Li  with a special character  S  and the difference  Li2D+1.  With the RLLC decoder, this special character  S  is expanded again.





Hints:


RLLC Example:  We again assume the above sequence and the parameter  D=2 :

  • Source symbol sequence:    ABAABAAAABBAAB...
  • RLC decimal sequence:          2; 3; 5; 1; 3; ...
  • RLLC decimal sequence:       2;  3;  S; 2;  1;  3; ...
  • RLLC binary sequence:          10′11′ 00′10′01′11′...


You can see:

  • The special character  S  is binary-coded here as  00 .  This is only an example – it does not have to be like this.
  • Since with  D=2  for all real RLC values  1Li3 , the decoder recognizes the special character  00.
  • It replaces this again with  2D1  (three in the example)  A–symbols.


Questions

1

How many bits would be needed  without source coding , i.e. with the assignment  A   →  0  and  B   →  1?

NBit = 

2

What is the relative frequency of symbol  B?

hB = 

 %

3

How many bits are needed for  Run–Length Coding  (RLC)  according to the given table with eight bits per codeword  (D=8)?

NBit = 

4

Is  Run–Length Coding  with seven bit code words  (D=7)  possible here?

Yes.
No.

5

How many bits are needed for  Run–Length Limited Coding  (RLLC)  with seven bits per code word  (D=7)?

NBit = 

6

How many bits are needed for  Run–Length Limited Coding  (RLLC)  with six bits per codeword  (D=6)?

NBit = 


Solution

(1)  The binary sequence consists of  N=1250  binary symbols (can be read from the last column in the table).  This means that the same number of bits is needed without coding:

NBit=1250_.


(2)  The entire symbol sequence of length  N=1250  contains  NB=25  symbols  B  and thus  NA=1225  symbols  A

  • The number  NB  der Symbole  B  ist dabei gleich der Zeilenzahl in der vorne angegebenen Tabelle.
  • Thus the following applies to the relative frequency of   B:
hB=NBN=251250=0.02_=2%.


(3)  We now consider  Run–Length Coding  (RLC), where each distance between two  B–symbols is represented by eight bits  (D=8).

  • Thus, with  NB=25, we get::
NBit=NB8=200_.


(4)  RLC  with  D=7 only allows values between  1  und  271=127 for  Li  .

  • However, the entry "226" in line 19 is greater     ⇒     NO.


(5)  Even with Run–Length Limited Coding  (RLLC)  , only values up to  127&nbsp are permitted for the "real" distances  Li  with  D=7  ;.

  • The entry "226" in line 19 is replaced by the following for  RLLC 
  • Line 19a:   S = 0000000   ⇒   special character, stands for "+ 127",
  • Line 19b:   1100011   ⇒   decimal 99.
  • This gives a total of 26 words of seven bits each:
NBit=267=182_.


(6)  Now the following changes have to be made in  RLLC  compared to  RLC  (see table):

  • Zeile   1:   122=1·63+59   (one word more),
  • Zeile   6:     70=1·63+7     (one word more),
  • Zeile   7:     80=1·63+17   (one word more),
  • Zeile 12:     79=1·63+18   (one word more),
  • Zeile 13:     93=1·63+30   (one word more),
  • Zeile 19:   226=3·63+37   (one word more),
  • Zeile 25:     97=1·63+34   (one word more).


This gives a total of 34 words of six bits each:

NBit=346=204_,

i.e. a worse result than with seven bits according to subtask (5).