Difference between revisions of "Aufgaben:Exercise 2.6Z: Magnitude and Phase"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Signaldarstellung/Fourierreihe }} right| Es soll der Zusammenhang zwischen :* den reellen Fourierko…“)
 
m (Text replacement - "analyse" to "analyze")
 
(31 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Fourierreihe
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Series
 
}}
 
}}
  
[[File:P_ID348__Sig_Z_2_6.png|right|]]
+
[[File:P_ID348__Sig_Z_2_6.png|right|frame|Signal  $x(t)$  to be analyzed]]
Es soll der Zusammenhang zwischen
+
The aim is to show the connection between
 +
* the real Fourier coefficients  $A_n$  und  $B_n$,
 +
* the complex coefficients  $D_n$, and
 +
* the magnitude or phase coefficients  $(C_n$,  $\varphi_n)$.
  
:* den reellen Fourierkoeffizienten $A_n$ und $B_n$,
 
  
:* den komplexen Koeffizienten $D_n$, sowie
 
  
:* den Betrags–/Phasenkoeffizienten ($C_n$, $\varphi_n$)
+
For this we consider the periodic signal
 +
:$$x(t)=1{\rm V+2V}\cdot\cos(\omega_0 t)  +{\rm 2V}\cdot\cos(2\omega_0 t)- \ {\rm 1V}\cdot\sin(2\omega_0 t)-{\rm 1V}\cdot\sin(3\omega_0 t).$$
 +
 
 +
This signal is shown in the graph in the range from  $–2T_0$  to  $+2T_0$.
 +
 
 +
 
  
aufgezeigt werden.
 
  
Dazu betrachten wir das periodische Signal
 
:$$x(t)=1{\rm V+2V}\cdot\cos(\omega_0 t)  +{\rm 2V}\cdot\cos(2\omega_0 t)- \ {\rm 1V}\cdot\sin(2\omega_0 t)-{\rm 1V}\cdot\sin(3\omega_0 t).$$
 
  
Dieses Signal ist in obiger Grafik im Bereich von $–2T_0$ bis $+2T_0$ dargestellt.
+
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Series|Fourier Series]].
 +
*You can find a compact summary of the topic in the two learning videos
 +
:[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]]  ⇒   "To calculate the Fourier coefficients",
 +
: [[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]]   ⇒    "Properties of the Fourier series representation".
 +
  
<b>Hinweis:</b> Diese Aufgabe bezieht sich auf den Lehrstoff von [http://en.lntwww.de/Signaldarstellung/Fourierreihe Kapitel 2.4].
 
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Werte besitzen die Koeffizienten $A_0$, $D_0$, $C_0$ und $\varphi_0$?
+
{What are the  coefficients&nbsp; $A_0$,&nbsp; $D_0$,&nbsp; $C_0$ and&nbsp; $\varphi_0$?
 
|type="{}"}
 
|type="{}"}
$C_0$ = { 1 3% } $\text{V}$
+
$A_0\ = \ $  { 1 3% } &nbsp;$\text{V}$
$\varphi_0$ = { 0 3% } $\text{Grad}$
+
$D_0\ = \ $  { 1 3% } &nbsp;$\text{V}$
 +
$C_0\ = \ $ { 1 3% } &nbsp;$\text{V}$
 +
$\varphi_0\ = \ $ { 0. } &nbsp;$\text{deg}$
  
  
{Welche der Cosinus– und Sinuskoeffizienten sind ungleich Null?
+
{Which of the cosine and sine coefficients are not equal to zero?
 
|type="[]"}
 
|type="[]"}
+ $A_1$.
+
+ $\ A_1$,
- $B_1$.
+
- $\ B_1$,
+ $A_2$.
+
+ $\ A_2$,
+ $B_2$.
+
+ $\ B_2$,
- $A_3$
+
- $\ A_3$,
+ $B_3$
+
+ $\ B_3$.
  
  
{Welche Werte besitzen die Koeffizienten $\varphi_1$, $C_1$ und $D_1$?
+
{What are the coefficients&nbsp; $\varphi_1$,&nbsp; $C_1$&nbsp; and&nbsp; $D_1$?
 
|type="{}"}
 
|type="{}"}
$\varphi_1$ = { 0 3% } $\text{Grad}$
+
$\varphi_1\ = \ $ { 0. } &nbsp;$\text{deg}$
$C_1$ = { 2 3% } $\text{V}$
+
$C_1\ = \ $ { 2 3% } &nbsp;$\text{V}$
$\text{Re}[D_1]$ = { 1 3% } $\text{V}$
+
$\text{Re}[D_1]\ = \ $ { 1 3% } &nbsp;$\text{V}$
$\text{Im}[D_1]$ = { 1 3% } $\text{V}$
+
$\text{Im}[D_1] \ = \ $ { 0. } &nbsp;$\text{V}$
  
  
{Welche Werte besitzen die Koeffizienten $\varphi_2$, $C_2$ und $D_2$?
+
{What are the coefficients&nbsp; $\varphi_2$,&nbsp; $C_2$&nbsp; and&nbsp; $D_2$?
 
|type="{}"}
 
|type="{}"}
$\varphi_2$ = $-$ { 26.56 3% } $\text{Grad}$
+
$\varphi_2\ = \ $ { -26.6--26.5 } &nbsp;$\text{deg}$
$C_2$ = { 2.236 3% } $\text{V}$
+
$\text{Re}[D_2]\ = \ $ { 1 3% } &nbsp;$\text{V}$
$\text{Re}[D_2]$ = { 1 3% } $\text{V}$
+
$\text{Im}[D_2]\ = \ $ { 0.5 3% } &nbsp;$\text{V}$
$\text{Im}[D_2]$ = { 0.5 3% } $\text{V}$
 
  
  
  
{Welche Werte besitzen die Koeffizienten $\varphi_3$ und $C_3$?
+
{What are the coefficients&nbsp; $\varphi_3$&nbsp; and&nbsp; $C_3$?
 
|type="{}"}
 
|type="{}"}
$\varphi_3$ = $-$ { 90 3% } $\text{Grad}$
+
$\varphi_3\ = \ $ { -91--89 } &nbsp;$\text{deg}$
$C_3$ = { 1 3% } $\text{V}$
+
$C_3\ = \ $ { 1 3% } &nbsp;$\text{V}$
  
  
{Wie groß ist der komplexe Fourierkoeffizient $D_\text{–3}$?
+
{What is the complex Fourier coefficient&nbsp; $D_\text{–3}$?
 
|type="{}"}
 
|type="{}"}
$\text{Re}[D_3]$ = { 0 3% } $\text{V}$
+
$\text{Re}[D_{-3}]\ = \ $ { 0. } &nbsp;$\text{V}$
$\text{Im}[D_3]$ = $-$ { 0.5 3% } $\text{V}$
+
$\text{Im}[D_{-3}]\ = \ $ { -0.51--0.49 } &nbsp;$\text{V}$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Der Gleichsignalkoeffizient beträgt $A_0 = 1 V$. Gleichzeitig gilt $C_0 = D0 = A0 \rightarrow C_0 \underline{= 1}, \varphi_0 \underline{= 0}$.
+
'''(1)'''&nbsp; The DC signal coefficient is&nbsp; $A_0 = 1\,{\rm  V}$.  
 +
*At the same time,&nbsp; $C_0 = D_0 = A_0 \hspace{0.1cm}\Rightarrow \hspace{0.1cm} C_0 \hspace{0.1cm}\underline{= 1\,{\rm  V}}, \varphi_0 \hspace{0.1cm}\underline{= 0}$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp;  <u>The correct answers are 1, 3, 4 and 6</u>:
 +
*There are no components with&nbsp; $\sin(\omega_0t)$&nbsp; and&nbsp; $\cos(3\omega_0t)$.
 +
*It follows directly that&nbsp; $B_1 = A_3 = 0$.
 +
*All other coefficients listed here are non-zero.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; In general:
 +
 
 +
:$$\varphi_n=\arctan\left({B_n}/{A_n}\right),\hspace{0.5cm}C_n=\sqrt{A_n^2+B_n^2},\hspace{0.5cm}D_n={1}/{2} \cdot (A_n-{\rm j}\cdot B_n).$$
 +
 
 +
*Because&nbsp; $B_1 = 0$&nbsp; we get&nbsp; $\varphi_1 \hspace{0.1cm}\underline{= 0}, \ C_1 = A_1 \hspace{0.1cm}\underline{= 2 \,{\rm  V}}$&nbsp; and&nbsp; $D_1 = A_1/2 \hspace{0.1cm}\underline{= 1 \,{\rm  V}}$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; With&nbsp; $A_2 = 2\,{\rm  V}$&nbsp; and&nbsp; $B_2 = -1\,{\rm  V}$&nbsp; one obtains:
 +
:$$\varphi_2=\arctan(-0.5)\hspace{0.15cm}\underline{=-26.56^{\circ}},\hspace{0.5cm}C_2=\sqrt{A_2^2+B_2^2}\hspace{0.15cm}\underline{=2.236 \; \rm V},$$
 +
:$$D_2={1}/{2} \cdot (A_2-{\rm j}\cdot B_2)=1\;\rm V+{\rm j}\cdot 0.5\, {\rm  V}
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Re}[D_2]\hspace{0.15cm}\underline{ = 1 \,{\rm  V}},
 +
\hspace{0.2cm}{\rm Im}[D_2]\hspace{0.15cm}\underline{ = 0.5\, {\rm  V}} .$$
 +
 
 +
 
  
'''2.''' Es gibt keine Anteile mit $sin(\omega_0t)$ und $cos(3\omega_0t)$. Daraus folgt direkt $B_1 = A_3 = 0$. Alle anderen hier aufgeführten Koeffizienten sind ungleich 0. ⇒  <u>Richtig sind also die Antworten 1, 3, 4 und 6</u>.
+
'''(5)'''&nbsp; It is&nbsp; $\varphi_3 \hspace{0.15cm}\underline{=\hspace{0.1cm}-90^{\circ}}$&nbsp; and&nbsp; $C_3 = |B_3| \hspace{0.15cm}\underline{ = 1 \,{\rm  V}}$.
  
'''3.'''  Allgemein gilt:
 
:$$\varphi_n=\arctan\left(\frac{B_n}{A_n}\right),\hspace{0.5cm}C_n=\sqrt{A_n^2+B_n^2},\hspace{0.5cm}D_n=\frac{1}{2}(A_n-{\rm j}B_n).$$
 
Wegen $B_1 = 0$ erhält man $\varphi_1 = 0, C_1 = A_1 = 2 V$ und $D_1 = A_1/2 = 1 V$.
 
  
'''4.'''  Mit $A_2 = 2 V$ und $B_2 = –1 V$ erhält man:
 
:$$\varphi_2=\arctan(-0.5)\hspace{0.15cm}\underline{=-26.56^{\rm o}},\hspace{0.5cm}C_2=\sqrt{A_2^2+B_2^2}\hspace{0.15cm}\underline{=2.236 \; \rm V},$$
 
:$$D_2=\frac{1}{2}(A_2-{\rm j}\cdot B_2)=1\;\rm V+{\rm j}\cdot 0.5 \rm V
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Re}[D_2]\hspace{0.15cm}\underline{ = 1 V},
 
\hspace{0.2cm}{\rm Im}[D_2]\hspace{0.15cm}\underline{ = 0.5 V} .$$
 
  
'''5.''' Es ist $\varphi_3 = –90°$ und $C_3 = |B_3| = 1 V$.
+
'''(6)'''&nbsp; It is&nbsp; $D_3 = -{\rm j} · B_3/2 ={\rm j}· 0.5 \,{\rm  V}$&nbsp; and&nbsp; $D_\text{–3} = D_3^{\star} ={\rm j}· B_3/2 = {- {\rm j} · 0.5 \,{\rm  V}}$
  
'''6.'''  Es gilt $D_3 = –j · B_3/2 = j · 0.5 V$ und $D_\text{–3} = D_3^{\star} = j · B_3/2 = –j · 0.5 V$.
+
:$$\Rightarrow \hspace{0.3cm} \text{Re}[D_{-3}]\hspace{0.15cm}\underline{=0}, \hspace{0.5cm}\text{Im}[D_{-3}]\hspace{0.15cm}\underline{=\hspace{0.1cm}- 0.5 \,{\rm  V}}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^2. Periodische Signale^]]
+
[[Category:Signal Representation: Exercises|^2.4 Fourier Series^]]

Latest revision as of 12:47, 22 September 2021

Signal  $x(t)$  to be analyzed

The aim is to show the connection between

  • the real Fourier coefficients  $A_n$  und  $B_n$,
  • the complex coefficients  $D_n$, and
  • the magnitude or phase coefficients  $(C_n$,  $\varphi_n)$.


For this we consider the periodic signal

$$x(t)=1{\rm V+2V}\cdot\cos(\omega_0 t) +{\rm 2V}\cdot\cos(2\omega_0 t)- \ {\rm 1V}\cdot\sin(2\omega_0 t)-{\rm 1V}\cdot\sin(3\omega_0 t).$$

This signal is shown in the graph in the range from  $–2T_0$  to  $+2T_0$.



Hints:

  • This exercise belongs to the chapter  Fourier Series.
  • You can find a compact summary of the topic in the two learning videos
Zur Berechnung der Fourierkoeffizienten  ⇒   "To calculate the Fourier coefficients",
Eigenschaften der Fourierreihendarstellung   ⇒   "Properties of the Fourier series representation".


Questions

1

What are the coefficients  $A_0$,  $D_0$,  $C_0$ and  $\varphi_0$?

$A_0\ = \ $

 $\text{V}$
$D_0\ = \ $

 $\text{V}$
$C_0\ = \ $

 $\text{V}$
$\varphi_0\ = \ $

 $\text{deg}$

2

Which of the cosine and sine coefficients are not equal to zero?

$\ A_1$,
$\ B_1$,
$\ A_2$,
$\ B_2$,
$\ A_3$,
$\ B_3$.

3

What are the coefficients  $\varphi_1$,  $C_1$  and  $D_1$?

$\varphi_1\ = \ $

 $\text{deg}$
$C_1\ = \ $

 $\text{V}$
$\text{Re}[D_1]\ = \ $

 $\text{V}$
$\text{Im}[D_1] \ = \ $

 $\text{V}$

4

What are the coefficients  $\varphi_2$,  $C_2$  and  $D_2$?

$\varphi_2\ = \ $

 $\text{deg}$
$\text{Re}[D_2]\ = \ $

 $\text{V}$
$\text{Im}[D_2]\ = \ $

 $\text{V}$

5

What are the coefficients  $\varphi_3$  and  $C_3$?

$\varphi_3\ = \ $

 $\text{deg}$
$C_3\ = \ $

 $\text{V}$

6

What is the complex Fourier coefficient  $D_\text{–3}$?

$\text{Re}[D_{-3}]\ = \ $

 $\text{V}$
$\text{Im}[D_{-3}]\ = \ $

 $\text{V}$


Solution

(1)  The DC signal coefficient is  $A_0 = 1\,{\rm V}$.

  • At the same time,  $C_0 = D_0 = A_0 \hspace{0.1cm}\Rightarrow \hspace{0.1cm} C_0 \hspace{0.1cm}\underline{= 1\,{\rm V}}, \varphi_0 \hspace{0.1cm}\underline{= 0}$.


(2)  The correct answers are 1, 3, 4 and 6:

  • There are no components with  $\sin(\omega_0t)$  and  $\cos(3\omega_0t)$.
  • It follows directly that  $B_1 = A_3 = 0$.
  • All other coefficients listed here are non-zero.


(3)  In general:

$$\varphi_n=\arctan\left({B_n}/{A_n}\right),\hspace{0.5cm}C_n=\sqrt{A_n^2+B_n^2},\hspace{0.5cm}D_n={1}/{2} \cdot (A_n-{\rm j}\cdot B_n).$$
  • Because  $B_1 = 0$  we get  $\varphi_1 \hspace{0.1cm}\underline{= 0}, \ C_1 = A_1 \hspace{0.1cm}\underline{= 2 \,{\rm V}}$  and  $D_1 = A_1/2 \hspace{0.1cm}\underline{= 1 \,{\rm V}}$.


(4)  With  $A_2 = 2\,{\rm V}$  and  $B_2 = -1\,{\rm V}$  one obtains:

$$\varphi_2=\arctan(-0.5)\hspace{0.15cm}\underline{=-26.56^{\circ}},\hspace{0.5cm}C_2=\sqrt{A_2^2+B_2^2}\hspace{0.15cm}\underline{=2.236 \; \rm V},$$
$$D_2={1}/{2} \cdot (A_2-{\rm j}\cdot B_2)=1\;\rm V+{\rm j}\cdot 0.5\, {\rm V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Re}[D_2]\hspace{0.15cm}\underline{ = 1 \,{\rm V}}, \hspace{0.2cm}{\rm Im}[D_2]\hspace{0.15cm}\underline{ = 0.5\, {\rm V}} .$$


(5)  It is  $\varphi_3 \hspace{0.15cm}\underline{=\hspace{0.1cm}-90^{\circ}}$  and  $C_3 = |B_3| \hspace{0.15cm}\underline{ = 1 \,{\rm V}}$.


(6)  It is  $D_3 = -{\rm j} · B_3/2 ={\rm j}· 0.5 \,{\rm V}$  and  $D_\text{–3} = D_3^{\star} ={\rm j}· B_3/2 = {- {\rm j} · 0.5 \,{\rm V}}$

$$\Rightarrow \hspace{0.3cm} \text{Re}[D_{-3}]\hspace{0.15cm}\underline{=0}, \hspace{0.5cm}\text{Im}[D_{-3}]\hspace{0.15cm}\underline{=\hspace{0.1cm}- 0.5 \,{\rm V}}.$$