Difference between revisions of "Aufgaben:Exercise 1.4Z: Entropy of the AMI Code"

From LNTwww
m (Text replacement - "generalis" to "generaliz")
 
(22 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Nachrichtenquellen mit Gedächtnis
+
{{quiz-Header|Buchseite=Information_Theory/Discrete_Sources_with_Memory
 
}}
 
}}
  
[[File:P_ID2249__Inf_A_1_4.png|right|frame|Binäres Quellensignal (oben) und ternäres Codersignal (unten)]]
+
[[File:P_ID2249__Inf_A_1_4.png|right|frame|Binary source signal (top) and <br>ternary encoder signal (bottom)]]
Wir gehen von ähnlichen Voraussetzungen wie in der [[Aufgaben:1.4_Entropienäherungen_für_den_AMI-Code|Aufgabe 1.4]] aus: &nbsp; Eine Binärquelle liefert die Quellensybolfolge $\langle q_\nu \rangle$  mit $q_\nu \in \{ {\rm L}, {\rm H} \}$, wobei es keine statistischen Bindungen zwischen den einzelnen Folgenelementen gibt.
+
We assume similar prerequisites as in&nbsp; [[Aufgaben:Exercise_1.4:_Entropy_Approximations_for_the_AMI_Code|Exercise 1.4]]&nbsp;: &nbsp;  
  
Für die Symbolwahrscheinlichkeiten gelte:
+
A binary source provides the source symbol sequence&nbsp; $\langle q_\nu \rangle$&nbsp;  with&nbsp; $q_\nu \in \{ {\rm L}, {\rm H} \}$, where there are no statistical bindings between the individual sequence elements.
* $p_{\rm L} =p_{\rm H} = 1/2$ (in den Teilaufgaben 1 und 2),
 
* $p_{\rm L} = 1/4, \, p_{\rm H} = 3/4$ (Teilaufgaben 3, 4 und 5),
 
* $p_{\rm L} = 3/4, \, p_{\rm H} = 1/4$ (Teilaufgabe 6).
 
  
 +
For the symbol probabilities, let:
 +
* $p_{\rm L} =p_{\rm H} = 1/2$&nbsp; (in subtasks 1 und 2),
 +
* $p_{\rm L} = 1/4, \, p_{\rm H} = 3/4$&nbsp; (subtasks 3, 4 and 5),
 +
* $p_{\rm L} = 3/4, \, p_{\rm H} = 1/4$&nbsp; (subtask 6).
  
Das dargestellte Codersignal $c(t)$ und die zugehörige Symbolfolge $\langle c_\nu \rangle$  mit $c_\nu \in \{{\rm P}, {\rm N}, {\rm M}  \}$ ergibt sich aus der AMI&ndash;Codierung (<i>Alternate Mark Inversion</i>) nach folgender Vorschrift:
 
  
* Das Binärsymbol $\rm L$ &nbsp;&rArr;&nbsp; <i>Low</i> wird stets durch das Ternärsymbol $\rm N$ &nbsp;&rArr;&nbsp; <i>Null</i> dargestellt.
+
The presented coded signal&nbsp; $c(t)$&nbsp; and the corresponding encoded sequence&nbsp; $\langle c_\nu \rangle$&nbsp; with&nbsp; $c_\nu \in \{{\rm P}, {\rm N}, {\rm M}  \}$&nbsp; results from the AMI coding&nbsp; ("Alternate Mark Inversion")&nbsp; according to the following rule:
* Das Binärsymbol $\rm H$ &nbsp;&rArr;&nbsp; <i>High</i> wird ebenfalls deterministisch, aber alternierend (daher der Name &bdquo;AMI&rdquo;) durch die Symbole $\rm P$ &nbsp;&rArr;&nbsp; <i>Plus</i> und $\rm M$ &nbsp;&rArr;&nbsp; <i>Minus</i> codiert.
 
  
 +
* The binary symbol&nbsp; $\rm L$ &nbsp; &rArr; &nbsp; "Low"&nbsp; is always represented by the ternary symbol&nbsp; $\rm N$ &nbsp; &rArr; &nbsp; "German: Null"&nbsp; &rArr; &nbsp;"Zero".
 +
* The binary symbol&nbsp; $\rm H$ &nbsp; &rArr; &nbsp; "High"&nbsp; is also encoded deterministically but alternately&nbsp; (hence the name "Alternate Mark Inversion")&nbsp; by the symbols&nbsp; $\rm P$ &nbsp;&rArr;&nbsp; "Plus"&nbsp; and&nbsp; $\rm M$ &nbsp;&rArr;&nbsp; "Minus".
  
In dieser Aufgabe sollen für die drei oben genannten Parametersätze der Entscheidungsgehalt $H_0$ sowie die resultierende Entropie $H_{\rm C}$ der Codesymbolfolge $\langle c_\nu \rangle$ bestimmt werden. Die relative Redundanz der Codefolge ergibt sich daraus entsprechend der Gleichung
+
 
 +
 
 +
 
 +
In this task, the decision content&nbsp; $H_0$&nbsp; and the resulting entropy&nbsp; $H_{\rm C}$&nbsp; of the encoded sequence&nbsp; $\langle c_\nu \rangle$&nbsp; are to be determined for the three parameter sets mentioned above.&nbsp; The relative redundancy of the code sequence results from this according to the equation
 
:$$r_{\rm C} = \frac{H_{\rm 0}-H_{\rm C}}{H_{\rm C}}
 
:$$r_{\rm C} = \frac{H_{\rm 0}-H_{\rm C}}{H_{\rm C}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 25: Line 29:
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Nachrichtenquellen_mit_Gedächtnis|Nachrichtenquellen mit Gedächtnis]].
+
 
*Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/Nachrichtenquellen_mit_Gedächtnis#Die_Entropie_des_AMI.E2.80.93Codes|Die Entropie des AMI&ndash;Codes]].
+
 
 +
''Hints:''  
 +
*This task belongs to the chapter&nbsp; [[Information_Theory/Discrete_Sources_with_Memory|Discrete Sources with Memory]].
 +
*Reference is made in particular to the page&nbsp; [[Information_Theory/Discrete_Sources_with_Memory#The_entropy_of_the_AMI_code|The entropy of the AMI code]].
 
   
 
   
*Allgemein bestehen folgende Relationen zwischen dem Entscheidungsgehalt $H_0$, der Entropie $H$ (hier gleich $H_{\rm C}$) und den Entropienäherungen:  
+
*In general, the following relations exist between the decision content&nbsp; $H_0$,&nbsp; the entropy&nbsp; $H$&nbsp; $($here equal to&nbsp; $H_{\rm C})$&nbsp; and the entropy approximations:  
 
:$$H \le \ \text{...} \  \le H_3 \le H_2 \le H_1 \le H_0  
 
:$$H \le \ \text{...} \  \le H_3 \le H_2 \le H_1 \le H_0  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*In [[Aufgaben:1.4_Entropienäherungen_für_den_AMI-Code|Aufgabe 1.4]] wurden für gleichwahrscheinliche Symbole $\rm L$ und $\rm H$ die Entropie&ndash;Näherungen wie folgt berechnet (jeweils in &bdquo;bit/Symbol&rdquo;):  
+
*In&nbsp; [[Aufgaben:Exercise_1.4:_Entropy_Approximations_for_the_AMI_Code|Exercise 1.4]]&nbsp;&nbsp;  the entropy approximations were calculated for equally probable symbols&nbsp; $\rm L$&nbsp; and&nbsp; $\rm H$&nbsp; as follows (each in "bit/symbol"):  
 
:$$H_1 = 1.500\hspace{0.05cm},\hspace{0.2cm} H_2 = 1.375\hspace{0.05cm},\hspace{0.2cm}H_3 = 1.292
 
:$$H_1 = 1.500\hspace{0.05cm},\hspace{0.2cm} H_2 = 1.375\hspace{0.05cm},\hspace{0.2cm}H_3 = 1.292
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 41: Line 48:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Die Quellensymbole seien gleichwahrscheinlich $(p_{\rm L} =  p_{\rm H}= 1/2)$. Wie groß ist die Entropie $H_{\rm C}$ der Codesymbolfolge $\langle c_\nu \rangle$?
+
{Let the source symbols be equally probable&nbsp; $(p_{\rm L} =  p_{\rm H}= 1/2)$.&nbsp; What is the entropy&nbsp; $H_{\rm C}$&nbsp; of the encoded sequence&nbsp; $\langle c_\nu \rangle$?
 
|type="{}"}
 
|type="{}"}
$H_{\rm C} \ = \ $ { 1 3% } $\ \rm bit/Ternärsymbol$
+
$H_{\rm C} \ = \ $ { 1 3% } $\ \rm bit/ternary \ symbol$
  
  
{Wie groß ist die relative Redundanz der Codesymbolfolge?
+
{What is the relative redundancy of the encoded sequence?
 
|type="{}"}
 
|type="{}"}
 
$r_{\rm C} \ =  \ $ { 36.9 3% } $\ \rm \%$
 
$r_{\rm C} \ =  \ $ { 36.9 3% } $\ \rm \%$
  
  
{Für die Binärquelle gelte nun $p_{\rm L}  = 1/4$ &nbsp;und&nbsp; $p_{\rm H}  = 3/4$. Welcher Wert ergibt sich nun für die Entropie der Codesymbolfolge?
+
{For the binary source,&nbsp; $p_{\rm L}  = 1/4$ &nbsp;and&nbsp; $p_{\rm H}  = 3/4$.&nbsp; What is the entropy of the encoded sequence?
 
|type="{}"}
 
|type="{}"}
$H_{\rm C} \ = \ $ { 0.811 3% } $\ \rm bit/Ternärsymbol$
+
$H_{\rm C} \ = \ $ { 0.811 3% } $\ \rm bit/ternary \ symbol$
 +
 
  
 +
{What is the relative redundancy of the encoded sequence?
  
{Wie groß ist nun die relative Redundanz der Codesymbolfolge?
 
 
|type="{}"}
 
|type="{}"}
 
$r_{\rm C} \ = \ $ { 48.8 3% } $\ \rm \%$
 
$r_{\rm C} \ = \ $ { 48.8 3% } $\ \rm \%$
  
  
{Berechnen Sie die Näherung $H_{\rm 1}$ der Coderentropie für $p_{\rm L} = 1/4$ &nbsp;und&nbsp; $p_{\rm H} = 3/4$.
+
{Calculate the approximation&nbsp; $H_{\rm 1}$&nbsp; of the code entropy for&nbsp; $p_{\rm L} = 1/4$ &nbsp;and&nbsp; $p_{\rm H} = 3/4$.
 
|type="{}"}
 
|type="{}"}
$H_{\rm 1} \ = \ $ { 1.56 3% } $\ \rm bit/Ternärsymbol$
+
$H_{\rm 1} \ = \ $ { 1.56 3% } $\ \rm bit/ternary \ symbol$
  
  
{Berechnen Sie die Näherung $H_{\rm 1}$ der Coderentropie für $p_{\rm L} = 3/4$ &nbsp;und&nbsp; $p_{\rm H} = 1/4$.
+
{Calculate the approximation&nbsp; $H_{\rm 1}$&nbsp; of the code entropy for&nbsp; $p_{\rm L} = 3/4$ &nbsp;and&nbsp; $p_{\rm H} = 1/4$.
 
|type="{}"}
 
|type="{}"}
$H_{\rm 1} \ = \ $ { 1.06 3% } $\ \rm bit/Ternärsymbol$
+
$H_{\rm 1} \ = \ $ { 1.06 3% } $\ \rm bit/ternary \ symbol$
  
  
Line 77: Line 85:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Da durch den AMI&ndash;Code weder neue Information hinzukommt noch Information verschwindet, ist die Entropie $H_{\rm C}$ der Codesymbolfolge $\langle c_\nu \rangle$ gleich der Quellenentropie $H_{\rm Q}$. Bei gleichwahrscheinlichen und statistisch voneinander unabhängigen Quellensymbolen gilt deshalb:
+
'''(1)'''&nbsp; Since the AMI code neither adds new information nor causes information to disappear, the entropy&nbsp; $H_{\rm C}$&nbsp; of the encoded sequence&nbsp; $\langle c_\nu \rangle$&nbsp; is equal to the source entropy&nbsp; $H_{\rm Q}$.&nbsp;
:$$H_{\rm Q}    {= 1 \,{\rm bit/Bin\ddot{a}rsymbol}} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_{\rm C}    \hspace{0.15cm} \underline {= 1 \,{\rm bit/Tern\ddot{a}rsymbol}}  
+
*Therefore, for equally probable and statistically independent source symbols, the following holds:
 +
:$$H_{\rm Q}    {= 1 \,{\rm bit/binary \ symbol}} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_{\rm C}    \hspace{0.15cm} \underline {= 1 \,{\rm bit/ternary \ symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Der Entscheidungsgehalt einer ternären Quelle beträgt $H_0 = \log_2 \; (3) = 1.585\; \rm bit/Symbol$. Damit ergibt sich für die relative Redundanz
+
 
 +
'''(2)'''&nbsp; The decision content of a ternary source is&nbsp; $H_0 = \log_2 \; (3) = 1.585\; \rm bit/symbol$.&nbsp;
 +
* This gives the following for the relative redundancy
 
:$$r_{\rm C} =1 -{H_{\rm C}/H_{\rm 0}}=1-1/{\rm log}_2\hspace{0.05cm}(3)  
 
:$$r_{\rm C} =1 -{H_{\rm C}/H_{\rm 0}}=1-1/{\rm log}_2\hspace{0.05cm}(3)  
 
  \hspace{0.15cm} \underline {= 36.9  \,\%}
 
  \hspace{0.15cm} \underline {= 36.9  \,\%}
Line 90: Line 101:
  
  
'''(3)'''&nbsp; Es gilt weiter $H_{\rm C} = H_{\rm Q}$. Wegen den ungleichen Symbolwahrscheinlichkeiten ist aber nun $H_{\rm Q}$ kleiner:
+
 
 +
'''(3)'''&nbsp; &nbsp; $H_{\rm C} = H_{\rm Q}$ is still valid.&nbsp;  However, because of the unequal symbol probabilities,&nbsp; $H_{\rm Q}$&nbsp; is now smaller:
 
:$$H_{\rm Q}  =  \frac{1}{4} \cdot {\rm log}_2\hspace{0.05cm} (4) + \frac{3}{4} \cdot  
 
:$$H_{\rm Q}  =  \frac{1}{4} \cdot {\rm log}_2\hspace{0.05cm} (4) + \frac{3}{4} \cdot  
 
{\rm log}_2\hspace{0.1cm} (4/3)
 
{\rm log}_2\hspace{0.1cm} (4/3)
  {= 0.811 \,{\rm bit/Bin\ddot{a}rsymbol}} \hspace{0.3cm}
+
  {= 0.811 \,{\rm bit/binary \ symbol}} \hspace{0.3cm}
\Rightarrow\hspace{0.3cm} H_{\rm C}  = H_{\rm Q}  \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/Tern\ddot{a}rsymbol}}
+
\Rightarrow\hspace{0.3cm} H_{\rm C}  = H_{\rm Q}  \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/ternary \ symbol}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; In Analogie zur Teilaufgabe '''(2)''' gilt nun $r_{\rm C} = 1 -  0.811/1.585
+
 
 +
'''(4)'''&nbsp; By analogy with sub-task&nbsp; '''(2)'''&nbsp; &nbsp; $r_{\rm C} = 1 -  0.811/1.585
 
  \hspace{0.15cm} \underline {= 48.8  \,\%}
 
  \hspace{0.15cm} \underline {= 48.8  \,\%}
  \hspace{0.05cm}.$
+
  \hspace{0.05cm}$ now holds.
Man kann dieses Ergebnis verallgemeinern. Es gilt nämlich:
+
*One can generalize this result.&nbsp; Namely, it holds:
 
:$$(1-0.488) = (1- 0.189) \cdot (1- 0.369)\hspace{0.3cm}
 
:$$(1-0.488) = (1- 0.189) \cdot (1- 0.369)\hspace{0.3cm}
 
\Rightarrow\hspace{0.3cm} (1-r_{\rm Codefolge})  = (1-r_{\rm Quelle}) \cdot (1- r_{\rm AMI-Code})
 
\Rightarrow\hspace{0.3cm} (1-r_{\rm Codefolge})  = (1-r_{\rm Quelle}) \cdot (1- r_{\rm AMI-Code})
Line 107: Line 120:
  
  
'''(5)'''&nbsp; Da jedes $\rm L$ auf $\rm N$ abgebildet wird und $\rm H$ alternierend auf $\rm M$ und $\rm P$, gilt
+
 
 +
'''(5)'''&nbsp; Since each&nbsp; $\rm L$&nbsp; is mapped to&nbsp; $\rm N$&nbsp; and&nbsp; $\rm H$&nbsp; is mapped alternately to&nbsp; $\rm M$&nbsp; and&nbsp; $\rm P$, it holds that
 
:$$p_{\rm N} = p_{\rm L} = 1/4\hspace{0.05cm},\hspace{0.2cm}p_{\rm P} = p_{\rm M} = p_{\rm H}/2 = 3/8\hspace{0.3cm}  
 
:$$p_{\rm N} = p_{\rm L} = 1/4\hspace{0.05cm},\hspace{0.2cm}p_{\rm P} = p_{\rm M} = p_{\rm H}/2 = 3/8\hspace{0.3cm}  
 
\Rightarrow\hspace{0.3cm} H_1  = {1}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4) +  
 
\Rightarrow\hspace{0.3cm} H_1  = {1}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4) +  
  2 \cdot {3}/{8} \cdot {\rm log}_2\hspace{0.1cm}(8/3)  \hspace{0.15cm} \underline {= 1.56 \,{\rm bit/Tern\ddot{a}rsymbol}}  
+
  2 \cdot {3}/{8} \cdot {\rm log}_2\hspace{0.1cm}(8/3)  \hspace{0.15cm} \underline {= 1.56 \,{\rm bit/ternary \ symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; Nun ergeben sich die Auftrittswahrscheinlichkeiten der Ternärsymbole zu $p_{\rm N} = 3/4$ sowie $p_{\rm P} = p_{\rm M} =1/8$. Somit gilt:
+
'''(6)'''&nbsp; Now the probabilities of occurrence of the ternary symbols are &nbsp; $p_{\rm N} = 3/4$&nbsp; sowie&nbsp; $p_{\rm P} = p_{\rm M} =1/8$.&nbsp; Thus:
 
:$$H_1  = {3}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4/3) +  
 
:$$H_1  = {3}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4/3) +  
  2 \cdot {1}/{8} \cdot {\rm log}_2\hspace{0.1cm}(8)  \hspace{0.15cm} \underline {= 1.06 \,{\rm bit/Tern\ddot{a}rsymbol}}  
+
  2 \cdot {1}/{8} \cdot {\rm log}_2\hspace{0.1cm}(8)  \hspace{0.15cm} \underline {= 1.06 \,{\rm bit/ternary \ symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
 
''Interpretation:''
 
''Interpretation:''
*Für $p_{\rm L} = 1/4, \ p_{\rm H} = 3/4$ ergibt sich $H_1 = 1.56 \; \rm bit/Symbol$.  
+
*For&nbsp; $p_{\rm L} = 1/4, \ p_{\rm H} = 3/4$&nbsp; gives&nbsp; $H_1 = 1.56 \; \rm bit/symbol$.  
*Für $p_{\rm L} = 3/4, \ p_{\rm H} = 1/4$ ergibt sich dagegen mit $H_1 = 1.06 \; \rm bit/Symbol$ ein deutlich kleinerer Wert.
+
*For&nbsp; $p_{\rm L} = 3/4, \ p_{\rm H} = 1/4$&nbsp;, on the other hand,&nbsp; $H_1 = 1.06 \; \rm bit/symbol$&nbsp; results in a significantly smaller value.
*Für beide Parameterkombinationen gilt aber gleichermaßen:
+
*For both parameter combinations, however, the same applies:
:$$H_0  = 1.585 \,{\rm bit/Symbol}\hspace{0.05cm},\hspace{0.2cm}H_{\rm C} =  
+
:$$H_0  = 1.585 \,{\rm bit/symbol}\hspace{0.05cm},\hspace{0.2cm}H_{\rm C} =  
  \lim_{k \rightarrow \infty } H_k = 0.811 \,{\rm bit/Symbol}
+
  \lim_{k \rightarrow \infty } H_k = 0.811 \,{\rm bit/symbol}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Daraus folgt: <br>Betrachtet man zwei Nachrichtenquellen $\rm Q1$ und $\rm Q2$ mit gleichem Symbolumfang $M$ &nbsp; &#8658; &nbsp; Entscheidungsgehalt&nbsp; $H_0 = \rm const.$, wobei bei der Quelle $\rm Q1$ die Entropienäherung erster Ordnung $(H_1)$ deutlich größer ist als bei der Quelle $\rm Q2$, so kann man daraus noch lange nicht schließen, dass die Entropie von $\rm Q1$ tatsächlich größer ist als die Entropie von $\rm Q2$. Vielmehr muss man für beide Quellen
+
It follows from this: <br>
* genügend viele Entropienäherungen $H_1$, $H_2$, $H_3$, ...  berechnen, und
+
*If one considers two message sources&nbsp; $\rm Q1$&nbsp; and&nbsp; $\rm Q2$&nbsp; with the same symbol set size&nbsp; $M$ &nbsp; &#8658; &nbsp; decision content&nbsp; $H_0 = \rm const.$, whereby the first order entropy approximation&nbsp; $(H_1)$&nbsp;  is clearly greater for source&nbsp; $\rm Q1$&nbsp; than for source&nbsp; $\rm Q2$, one cannot conclude from this by any means that the entropy of&nbsp; $\rm Q1$&nbsp; is actually greater than the entropy of $\rm Q2$.&nbsp;
* daraus (grafisch oder analytisch) den Grenzwert von $H_k$ für $k \to \infty$ bestimmen.
+
*Rather, one must
 
+
:* calculate enough entropy approximations&nbsp; $H_1$,&nbsp; $H_2$,&nbsp; $H_3$,&nbsp; ...  for both sources and
 +
:* determine from them&nbsp; (graphically or analytically)&nbsp; the limit value of&nbsp; $H_k$&nbsp; for&nbsp; $k \to \infty$.
  
Erst dann ist eine endgültige Aussage über die Entropieverhältnisse möglich.
+
*Only then a final statement about the entropy ratios is possible.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^1.2 Nachrichtenquellen mit Gedächtnis^]]
+
[[Category:Information Theory: Exercises|^1.2 Sources with Memory^]]

Latest revision as of 12:48, 22 September 2021

Binary source signal (top) and
ternary encoder signal (bottom)

We assume similar prerequisites as in  Exercise 1.4 :  

A binary source provides the source symbol sequence  $\langle q_\nu \rangle$  with  $q_\nu \in \{ {\rm L}, {\rm H} \}$, where there are no statistical bindings between the individual sequence elements.

For the symbol probabilities, let:

  • $p_{\rm L} =p_{\rm H} = 1/2$  (in subtasks 1 und 2),
  • $p_{\rm L} = 1/4, \, p_{\rm H} = 3/4$  (subtasks 3, 4 and 5),
  • $p_{\rm L} = 3/4, \, p_{\rm H} = 1/4$  (subtask 6).


The presented coded signal  $c(t)$  and the corresponding encoded sequence  $\langle c_\nu \rangle$  with  $c_\nu \in \{{\rm P}, {\rm N}, {\rm M} \}$  results from the AMI coding  ("Alternate Mark Inversion")  according to the following rule:

  • The binary symbol  $\rm L$   ⇒   "Low"  is always represented by the ternary symbol  $\rm N$   ⇒   "German: Null"  ⇒  "Zero".
  • The binary symbol  $\rm H$   ⇒   "High"  is also encoded deterministically but alternately  (hence the name "Alternate Mark Inversion")  by the symbols  $\rm P$  ⇒  "Plus"  and  $\rm M$  ⇒  "Minus".



In this task, the decision content  $H_0$  and the resulting entropy  $H_{\rm C}$  of the encoded sequence  $\langle c_\nu \rangle$  are to be determined for the three parameter sets mentioned above.  The relative redundancy of the code sequence results from this according to the equation

$$r_{\rm C} = \frac{H_{\rm 0}-H_{\rm C}}{H_{\rm C}} \hspace{0.05cm}.$$




Hints:

  • In general, the following relations exist between the decision content  $H_0$,  the entropy  $H$  $($here equal to  $H_{\rm C})$  and the entropy approximations:
$$H \le \ \text{...} \ \le H_3 \le H_2 \le H_1 \le H_0 \hspace{0.05cm}.$$
  • In  Exercise 1.4   the entropy approximations were calculated for equally probable symbols  $\rm L$  and  $\rm H$  as follows (each in "bit/symbol"):
$$H_1 = 1.500\hspace{0.05cm},\hspace{0.2cm} H_2 = 1.375\hspace{0.05cm},\hspace{0.2cm}H_3 = 1.292 \hspace{0.05cm}.$$




Questions

1

Let the source symbols be equally probable  $(p_{\rm L} = p_{\rm H}= 1/2)$.  What is the entropy  $H_{\rm C}$  of the encoded sequence  $\langle c_\nu \rangle$?

$H_{\rm C} \ = \ $

$\ \rm bit/ternary \ symbol$

2

What is the relative redundancy of the encoded sequence?

$r_{\rm C} \ = \ $

$\ \rm \%$

3

For the binary source,  $p_{\rm L} = 1/4$  and  $p_{\rm H} = 3/4$.  What is the entropy of the encoded sequence?

$H_{\rm C} \ = \ $

$\ \rm bit/ternary \ symbol$

4

What is the relative redundancy of the encoded sequence?

$r_{\rm C} \ = \ $

$\ \rm \%$

5

Calculate the approximation  $H_{\rm 1}$  of the code entropy for  $p_{\rm L} = 1/4$  and  $p_{\rm H} = 3/4$.

$H_{\rm 1} \ = \ $

$\ \rm bit/ternary \ symbol$

6

Calculate the approximation  $H_{\rm 1}$  of the code entropy for  $p_{\rm L} = 3/4$  and  $p_{\rm H} = 1/4$.

$H_{\rm 1} \ = \ $

$\ \rm bit/ternary \ symbol$


Solution

(1)  Since the AMI code neither adds new information nor causes information to disappear, the entropy  $H_{\rm C}$  of the encoded sequence  $\langle c_\nu \rangle$  is equal to the source entropy  $H_{\rm Q}$. 

  • Therefore, for equally probable and statistically independent source symbols, the following holds:
$$H_{\rm Q} {= 1 \,{\rm bit/binary \ symbol}} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_{\rm C} \hspace{0.15cm} \underline {= 1 \,{\rm bit/ternary \ symbol}} \hspace{0.05cm}.$$


(2)  The decision content of a ternary source is  $H_0 = \log_2 \; (3) = 1.585\; \rm bit/symbol$. 

  • This gives the following for the relative redundancy
$$r_{\rm C} =1 -{H_{\rm C}/H_{\rm 0}}=1-1/{\rm log}_2\hspace{0.05cm}(3) \hspace{0.15cm} \underline {= 36.9 \,\%} \hspace{0.05cm}.$$


(3)    $H_{\rm C} = H_{\rm Q}$ is still valid.  However, because of the unequal symbol probabilities,  $H_{\rm Q}$  is now smaller:

$$H_{\rm Q} = \frac{1}{4} \cdot {\rm log}_2\hspace{0.05cm} (4) + \frac{3}{4} \cdot {\rm log}_2\hspace{0.1cm} (4/3) {= 0.811 \,{\rm bit/binary \ symbol}} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_{\rm C} = H_{\rm Q} \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/ternary \ symbol}} \hspace{0.05cm}.$$


(4)  By analogy with sub-task  (2)    $r_{\rm C} = 1 - 0.811/1.585 \hspace{0.15cm} \underline {= 48.8 \,\%} \hspace{0.05cm}$ now holds.

  • One can generalize this result.  Namely, it holds:
$$(1-0.488) = (1- 0.189) \cdot (1- 0.369)\hspace{0.3cm} \Rightarrow\hspace{0.3cm} (1-r_{\rm Codefolge}) = (1-r_{\rm Quelle}) \cdot (1- r_{\rm AMI-Code}) \hspace{0.05cm}.$$


(5)  Since each  $\rm L$  is mapped to  $\rm N$  and  $\rm H$  is mapped alternately to  $\rm M$  and  $\rm P$, it holds that

$$p_{\rm N} = p_{\rm L} = 1/4\hspace{0.05cm},\hspace{0.2cm}p_{\rm P} = p_{\rm M} = p_{\rm H}/2 = 3/8\hspace{0.3cm} \Rightarrow\hspace{0.3cm} H_1 = {1}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4) + 2 \cdot {3}/{8} \cdot {\rm log}_2\hspace{0.1cm}(8/3) \hspace{0.15cm} \underline {= 1.56 \,{\rm bit/ternary \ symbol}} \hspace{0.05cm}.$$


(6)  Now the probabilities of occurrence of the ternary symbols are   $p_{\rm N} = 3/4$  sowie  $p_{\rm P} = p_{\rm M} =1/8$.  Thus:

$$H_1 = {3}/{4} \cdot {\rm log}_2\hspace{0.1cm} (4/3) + 2 \cdot {1}/{8} \cdot {\rm log}_2\hspace{0.1cm}(8) \hspace{0.15cm} \underline {= 1.06 \,{\rm bit/ternary \ symbol}} \hspace{0.05cm}.$$

Interpretation:

  • For  $p_{\rm L} = 1/4, \ p_{\rm H} = 3/4$  gives  $H_1 = 1.56 \; \rm bit/symbol$.
  • For  $p_{\rm L} = 3/4, \ p_{\rm H} = 1/4$ , on the other hand,  $H_1 = 1.06 \; \rm bit/symbol$  results in a significantly smaller value.
  • For both parameter combinations, however, the same applies:
$$H_0 = 1.585 \,{\rm bit/symbol}\hspace{0.05cm},\hspace{0.2cm}H_{\rm C} = \lim_{k \rightarrow \infty } H_k = 0.811 \,{\rm bit/symbol} \hspace{0.05cm}.$$

It follows from this:

  • If one considers two message sources  $\rm Q1$  and  $\rm Q2$  with the same symbol set size  $M$   ⇒   decision content  $H_0 = \rm const.$, whereby the first order entropy approximation  $(H_1)$  is clearly greater for source  $\rm Q1$  than for source  $\rm Q2$, one cannot conclude from this by any means that the entropy of  $\rm Q1$  is actually greater than the entropy of $\rm Q2$. 
  • Rather, one must
  • calculate enough entropy approximations  $H_1$,  $H_2$,  $H_3$,  ... for both sources and
  • determine from them  (graphically or analytically)  the limit value of  $H_k$  for  $k \to \infty$.
  • Only then a final statement about the entropy ratios is possible.