Difference between revisions of "Aufgaben:Exercise 3.6: Partitioning Inequality"

From LNTwww
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen
+
{{quiz-Header|Buchseite=Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:P_ID2812__Inf_A_3_5.png|right|Wahrscheinlichkeitsfunktionen <i>P<sub>X</sub></i> und <i>Q<sub>X</sub></i>]]
+
[[File:P_ID2812__Inf_A_3_5.png|right|frame|Two probability functions&nbsp; $P_X$&nbsp; and&nbsp; $Q_X$]]
Die ''Kullback–Leibler–Distanz'' (kurz KLD) wird auch in der „Partitionierungsungleichung” (englisch: ''Partition Unequality'') verwendet:  
+
The&nbsp; '''Kullback–Leibler distance'''&nbsp; (KLD for short)&nbsp; is also used in the&nbsp;  "Partition Unequality":
* Wir gehen von der Menge $X =  \{ x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M  \}$ und den Wahrscheinlichkeitsfunktionen
+
* We assume the set&nbsp; $X =  \{ x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  \}$&nbsp; and the probability functions
:$$P_X(X) = P_X (  x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M  )\hspace{0.05cm},$$
+
:$$P_X(X) = P_X (  x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  )\hspace{0.05cm},$$
:$$Q_X(X) =Q_X (  x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M  ), $$  
+
:$$Q_X(X) =Q_X (  x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  ), $$  
aus, die in irgendeiner Form „ähnlich” sein sollen.
+
:which are said to be&nbsp; "similar in some way".
  
* Die Menge $X$ unterteilen wir in die Partitionen $A_1, \text{...} , A_K$ , die zueinander [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen#Disjunkte_Mengen|disjunkt]] sind und ein [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen#Vollst.C3.A4ndiges_System|vollständiges System]] ergeben:
+
* We divide the set&nbsp; $X$&nbsp; into partitions&nbsp; $A_1, \text{...} ,&nbsp; A_K$, which are&nbsp; [[Theory_of_Stochastic_Signals/Mengentheoretische_Grundlagen#Disjunkte_Mengen|disjoint]]&nbsp; to each other and result in a&nbsp; [[Theory_of_Stochastic_Signals/Mengentheoretische_Grundlagen#Vollst.C3.A4ndiges_System|complete system]]&nbsp;:
:$X$$ = \big \{ \hspace{0.05cm} x_1, \hspace{0.05cm} x_2, ... \hspace{0.05cm}, \hspace{0.05cm} x_M  \hspace{0.05cm} \big \}$$
+
:$$\bigcup_{i=1}^{K} = X, \hspace{0.5cm} A_i \cap A_j = {\it \phi} \hspace{0.25cm}\text{für}\hspace{0.25cm} 1 \le i \ne j \le K .$$
  
* Die Wahrscheinlichkeitsfunktionen bezüglich der Partitionierungen $A_1, A_2, \text{...} , A_K$ bezeichnen wir im Folgenden mit
+
* In the following, we denote the probability functions with respect to the partitionings&nbsp; $A_1,\ A_2, \text{...} ,\ A_K$&nbsp; by
:$$P_X^{\hspace{0.15cm}(A)} = \left [ P_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},P_X (  A_K  ) \right ],\hspace{0.05cm}\hspace{0.5cm}{\rm wobei}\hspace{0.15cm} P_X (  A_i  ) = \sum_{ x \in A_i} P_X ( x  )\hspace{0.05cm},$$
+
:$$P_X^{\hspace{0.15cm}(A)} = \big [ P_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},P_X (  A_K  ) \big  ],\hspace{0.05cm}\hspace{0.5cm}{\rm where}\hspace{0.15cm} P_X (  A_i  ) = \sum_{ x \in A_i} P_X ( x  )\hspace{0.05cm},$$
:$$Q_X^{\hspace{0.15cm}(A)}= \left [ Q_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm},Q_X (  A_K  ) \right ],\hspace{0.05cm}\hspace{0.40cm}{\rm wobei}\hspace{0.15cm} Q_X (  A_i  ) = \sum_{ x \in A_i} Q_X ( x  )\hspace{0.05cm}. $$
+
:$$Q_X^{\hspace{0.15cm}(A)}= \big  [ Q_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},Q_X (  A_K  ) \big  ],\hspace{0.05cm}\hspace{0.40cm}{\rm where}\hspace{0.15cm} Q_X (  A_i  ) = \sum_{ x \in A_i} Q_X ( x  )\hspace{0.05cm}. $$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Die '''Partitionierungsungleichung''' liefert folgende Größenrelation hinsichtlich der Kullback–Leibler–Distanzen:
+
$\text{Please note:}$ &nbsp;The&nbsp; '''partitioning inequality'''&nbsp; yields the following size relation with respect to the Kullback-Leibler distances:
 
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)})  
 
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)})  
 
\hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$}}
 
\hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$}}
  
  
In Teilaufgabe (1) soll die Kullback–Leibler–Distanz der beiden Wahrscheinlichkeitsfunktionen $P_X(X)$ und $Q_X(X)$ für $X = \{0, 1, 2\}$ &nbsp;&rArr;&nbsp; $|X| = 3$ ermittelt werden. Anschließend soll die Menge $X$ mit $K = 2$ partitioniert werden entsprechend
+
In subtask&nbsp; '''(1)'''&nbsp; the Kullback-Leibler distance of the two probability functions&nbsp; $P_X(X)$&nbsp; and&nbsp; $Q_X(X)$&nbsp; for&nbsp; $X = \{0,\ 1,\ 2\}$ &nbsp; &rArr; &nbsp; $|X| = 3$&nbsp; is to be determined.  
* $A = \{A_1 , A_2\}$  mit  $A_1 =\{0\}$  und $A_2 = \{ 1,2 \}$ ,
 
* $B = \{B_1 , B_2\}$  mit  $B_1 =\{1\}$  und $B_2 = \{ 0,2 \}$,
 
* $C = \{C_1 , C_2\}$  mit  $C_1 =\{2\}$  und $C_2 = \{  0,1\}$,
 
  
Anschließend sollen die jeweiligen Kullback–Leibler–Distanzen angegeben werden:
+
*Then the set&nbsp; $X$&nbsp; is to be partitioned with&nbsp; $K = 2$&nbsp; according to
* $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
+
:* $A = \{A_1 ,\ A_2\}$&nbsp;  with&nbsp;  $A_1 =\{0\}$&nbsp;  and&nbsp; $A_2 = \{ 1,\ 2 \}$ ,  
* $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
+
:* $B = \{B_1 ,\ B_2\}$&nbsp;  with&nbsp;  $B_1 =\{1\}$&nbsp;  and&nbsp; $B_2 = \{ 0,\ 2 \}$,  
* $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.
+
:* $C = \{C_1 ,\ C_2\}$&nbsp;  with&nbsp;  $C_1 =\{2\}$&nbsp;  and&nbsp; $C_2 = \{ 0,\ 1\}$.  
  
In der Teilaufgabe (5) wird schließlich nach den Bedingungen gefragt, damit in der obigen Ungleichung das Gleichheitszeichen zutrifft.
+
*Then the respective Kullback-Leibler distances are to be given:
 +
:* $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
 +
:* $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
 +
:* $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.
  
 +
*Finally, subtask&nbsp; '''(5)'''&nbsp; asks for the conditions that must be satisfied for the equal sign to be true in the above inequality.
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
 
*Insbesondere wird Bezug genommen auf die Seite [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Relative Entropie &ndash; Kullback-Leibler-Distanz]].
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
*Die beiden  Wahrscheinlichkeitsfunktionen können aus obiger Grafik wie folgt abgelesen werden:
 
:$$P_X(X) = [1/4 , 1/2 , 1/4],\hspace{0.5cm} Q_X(X) = [1/8 , 3/4, 1/8].$$
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The exercise belongs to the chapter&nbsp; [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables|Some preliminary remarks on two-dimensional random variables]].
 +
*In particular, reference is made to the page&nbsp; [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Informational_divergence_-_Kullback-Leibler_distance|Relative entropy &ndash; Kullback-Leibler distance]].
 +
*The two probability functions can be read from the above graph as follows:
 +
:$$P_X(X) = \big [1/4 , \ 1/2 , \ 1/4 \big ],\hspace{0.5cm} Q_X(X) = \big [1/8, \ 3/4, \ 1/8 \big].$$
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie die Kullback–Leibler–Distanz (KLD) allgemein.
+
{Calculate the Kullback-Leibler distance in general.
 
|type="{}"}
 
|type="{}"}
 
$ D(P_X \hspace{0.05cm} \vert \vert \hspace{0.05cm}  Q_X) \ = \ $ { 0.2075 3% } $\ \rm bit$
 
$ D(P_X \hspace{0.05cm} \vert \vert \hspace{0.05cm}  Q_X) \ = \ $ { 0.2075 3% } $\ \rm bit$
  
{Welche Kullback–Leibler–Distanz ergibt sich für die Partitionierung $ A_1 = \{0\}, A_2 = \{1, 2\}$?
+
{What is the Kullback-Leibler distance for the partition&nbsp; $ A_1 = \{0\},\ A_2 = \{1, 2\}$?
 
|type="{}"}
 
|type="{}"}
 
$D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } ) \ = \ $ { 0.0832 3% } $\ \rm bit$
 
$D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } ) \ = \ $ { 0.0832 3% } $\ \rm bit$
  
{Welche Kullback–Leibler–Distanz  ergibt sich für die Partitionierung $ B_1 = \{1\}, B_2 = \{0, 2\}$?
+
{What is the Kullback-Leibler distance for the partition&nbsp; $ B_1 = \{1\}, \ B_2 = \{0, 2\}$?
 
|type="{}"}
 
|type="{}"}
 
$D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } ) \ = \ $ { 0.2075 3% } $\ \rm bit$
 
$D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } ) \ = \ $ { 0.2075 3% } $\ \rm bit$
  
{Welche Kullback–Leibler–Distanz ergibt sich für die Partitionierung $ C_1 = \{2\}, C_2 = \{0, 1\}$?
+
{What is the Kullback-Leibler distance for the partition&nbsp; $ C_1 = \{2\},\ C_2 = \{0, 1\}$?
|type="[]"}
+
|type="()"}
+ Das gleiche Ergebnis wie für die Partitionierung $A$.
+
+ The same result as for partition&nbsp; $\rm A$.
- Das gleiche Ergebnis wie für die Partitionierung $B$.
+
- The same result as for partition&nbsp; $\rm B$.
- Ein ganz anderes Ergebnis.
+
- A completely different result.
  
{Unter welchen Bedingungen ergibt sich für allgemeines $K$ die Gleichheit?
+
{Under which conditions does equality result for general&nbsp; $K$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Es müssen $|X|$ Gleichungen erfüllt sein.
+
+ &nbsp; $|X|$&nbsp; equations must be fulfilled.
+ Für $x \in A_i$ muss gelten: &nbsp; $P_X(x)/Q_X(x) = P_X(A_i)/ Q_X(A_i)$
+
+ For&nbsp; $x \in A_i$&nbsp; must hold: &nbsp; $P_X(x)/Q_X(x) = P_X(A_i)/ Q_X(A_i)$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''1.'''  Für die Kullback–Leibler–Distanz (KLD) gilt:
+
'''(1)'''&nbsp; For the Kullback-Leibler distance of the non-partitioned quantities&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; holds:
 
 
$$D(P_X \parallel P_Y) = E [ log_2 \frac{P_X(X)}{P_Y(X)}] = \sum\limits_{ x \epsilon X} P_X(x) . log_2 \frac{P_X(x)}{P_Y(x)} =$$
 
 
 
$$\frac{1}{2} . log_2 \frac{1/2}{3/4}  + 2 . \frac{1}{4} . log_2 \frac{1/4}{1/8}  +log_2 \frac{2}{3} + \frac{1}{2} . log_2(2) =$$
 
 
 
$$1 -  \frac{1}{2} . log_2(3) = 0.2075 (bit)$$
 
 
 
 
 
'''2.'''  $Partitionierung  A  \Rightarrow  A_1 = \{0\}$ ,  $A_2 = \{ 1 , 2 \}$ :  Man erhält die Wahrscheinlichkeitsfunktionen  $P_X^{ (A) } (X) = \{1/4 , 3/4\}$ und $Q_X^{ (A) } (X) = \{1/8 , 7/8\}$.  Daraus folgt:  
 
  
$$D(P_X^{ (A) } \parallel Q_X^{ (A) } )$ =   \frac{1}{4} . log_2 \frac{1/4}{1/8} + \frac{3}{4} . log_2 \frac{3/4}{7/8} =$$  
+
:$$D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}P_Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm}X}
 +
P_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(x)}{P_Y(x)}$$
 +
:$$\Rightarrow D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}P_Y) = \hspace{-0.15cm} \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} +
 +
2 \cdot \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} =
 +
\frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{2}{3} + \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} (2) = 1- \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} (3)
 +
\hspace{0.15cm}
 +
\underline {=0.2075\,{\rm (bit)}}
 +
\hspace{0.05cm}.$$
  
$$ =  \frac{1}{4} . log_2 (2) +  \frac{3}{4} . log_2 \frac{6}{7} = 0.0832 (bit)$$
 
Es ergibt sich also eine kleinere KLD als in Teilaufgabe (a).
 
  
  
'''3.''' $Partitionierung  B \Rightarrow B_1 = \{1\}$ ,  $B_2 = \{ 0 , 2 \}$ :  Man erhält die Wahrscheinlichkeitsfunktionen $P_X^{ (B) } (X) = \{1/2 , 1/2\}$ und $Q_X^{ (B) } (X) = \{3/4 , 1/4\}$.
+
'''(2)'''&nbsp;  With&nbsp; $\text{partition }A$ &nbsp; &rArr; &nbsp; $A_1 = \{0\}$ ,&nbsp; $A_2 = \{ 1 , 2 \}$&nbsp; we get&nbsp; $P_X^{ (A) } (X) = \{1/4 , \ 3/4\}$&nbsp; and&nbsp; $Q_X^{ (A) } (X) = \{1/8 , \ 7/8\}$.&nbsp;  From this follows:
Analog zur Teilaufgabe (b) erhält man nun:  
 
  
$$D(P_X^{ (B) } \parallel Q_X^{ (B) } ) =   \frac{1}{2} . log_2 \frac{1/2}{3/4} \frac{1}{2} . log_2 \frac{1/2}{1/4} = 0.2075$$
+
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) = \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} +
$\Rightarrow$ gleiches Ergebnis wie in Aufgabe (a) $\Rightarrow$ Bei Partitionierung (B) gilt das Gleichheitszeichen.
+
\frac{3}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{3/4}{7/8} =\frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} (2) + \frac{3}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{6}{7} \hspace{0.15cm} \underline {=0.0832\,{\rm (bit)}}
 +
\hspace{0.05cm}.$$  
  
  
'''4.'''$Partitionierung  C \Rightarrow  C_1 = \{2\}$ ,  $C_2 = \{ 0 , 1\}$ :  Man erhält  $P_X^{ (C) } (X) = \{1/4, 3/4\}$  , $Q_X^{ (C) } (X) = \{1/8, 7/8\}$ . also die gleichen Funktionen wie bei der Partitionierung
 
$A \Rightarrow  Lösungsvorschlag 1$.
 
  
 +
'''(3)'''&nbsp; With&nbsp; $\text{partition } B$ &nbsp; &rArr; &nbsp;  $B_1 = \{1\}$ ,&nbsp;  $B_2 = \{ 0 ,\ 2 \}$&nbsp; the probability functions are&nbsp;  $P_X^{ (B) } (X) = \{1/2 , \ 1/2\}$&nbsp; und&nbsp; $Q_X^{ (B) } (X) = \{3/4 , \ 1/4\}$.&nbsp;
 +
*Analogous to subtask&nbsp; '''(2)'''&nbsp; one thus obtains:
 +
:$$D(P_X^{\hspace{0.15cm}(B)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(B)})  = \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} +
 +
\frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{1/4} \hspace{0.15cm} \underline {=0.2075\,{\rm (bit)}}
 +
\hspace{0.05cm}.$$
 +
*The result agrees with that of subtask&nbsp; '''(1)'''&nbsp; &nbsp; &rArr; &nbsp; With&nbsp; $\text{partition }B$&nbsp; the equal sign applies.
  
'''5.'''  Partitionierung $B$ hat zum Ergebnis $D(P_X^{ (B) } \parallel Q_X^{ (B) } ) = D(P_X \parallel Q_X)$ geführt. Für diesen Fall ist
 
  
  
$\frac{P_X(1)}{Q_X(1)} =  \frac{1/2}{3/4} = \frac{2}{3}$ , $\frac{P_X(B_1)}{Q_X(B_1)} = \frac{1/2}{3/4} = \frac{2}{3}$,
 
  
$\frac{P_X(0)}{Q_X(0)} = \frac{1/4}{1/8} = 2$  , $\frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2$,
+
'''(4)'''&nbsp; With&nbsp; $\text{partition } C$ &nbsp; &rArr; &nbsp;  $C_1 = \{2\}$ ,  $C_2 = \{ 0 , \ 1\}$&nbsp; one obtains&nbsp;  $P_X^{ (C) } (X) = \{1/4, \  3/4\}$  , $Q_X^{ (C) } (X) = \{1/8, \ 7/8\}$, <br>i.e. the same functions as for the&nbsp; $\text{partition }A$ &nbsp; &rArr; &nbsp; <u>solution proposal 1</u>.
  
$\frac{P_X(2)}{Q_X(2)} =  \frac{1/4}{1/8} = 2$ , $\frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2$
 
  
Es muss also für alle $x \epsilon X$ gelten :
 
  
$\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_1)}{Q_X(B_1)} $ , falls $ x \epsilon B_1$
+
'''(5)'''&nbsp; The&nbsp; $\text{partition }B$&nbsp; has led to the result&nbsp; $D(P_X^{ (B) } \hspace{0.05cm} ||  \hspace{0.05cm}Q_X^{ (B) } ) = D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}Q_X)$.
 +
*So for this case
 +
:$$\frac{P_X(1)}{Q_X(1)} = \frac{1/2}{3/4} = \frac{2}{3},  \ \frac{P_X(B_1)}{Q_X(B_1)} = \frac{1/2}{3/4} = {2}/{3},$$
 +
:$$\frac{P_X(0)}{Q_X(0)} =  \frac{1/4}{1/8} = 2, \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2,$$
 +
:$$\frac{P_X(2)}{Q_X(2)} =  \frac{1/4}{1/8} = 2,  \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2.$$
  
$\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_2)}{Q_X(B_2)} $ , falls $ x \epsilon B_2$
+
*It must therefore hold for all&nbsp; $x \in X$&nbsp; :
 +
:$$\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_1)}{Q_X(B_1)}, \text{ if } x \in B_1, \hspace{0.5cm}\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_2)}{Q_X(B_2)}, \text{ if } x \in B_2.$$
  
Durch Verallgemeinerung erhält man, dass $beide Lösungsvorschläge$ richtig sind.
+
*By generalization, one can see that&nbsp; <u>both proposed solutions</u>&nbsp; are correct.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 125: Line 134:
  
  
[[Category:Aufgaben zu Informationstheorie |^3.1 Vorbemerkungen zu 2D-Zufallsgrößen^]]
+
[[Category:Information Theory: Exercises |^3.1 General Information on 2D Random Variables^]]

Latest revision as of 09:15, 24 September 2021

Two probability functions  $P_X$  and  $Q_X$

The  Kullback–Leibler distance  (KLD for short)  is also used in the  "Partition Unequality":

  • We assume the set  $X = \{ x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M \}$  and the probability functions
$$P_X(X) = P_X ( x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M )\hspace{0.05cm},$$
$$Q_X(X) =Q_X ( x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M ), $$
which are said to be  "similar in some way".
  • We divide the set  $X$  into partitions  $A_1, \text{...} ,  A_K$, which are  disjoint  to each other and result in a  complete system :
$$\bigcup_{i=1}^{K} = X, \hspace{0.5cm} A_i \cap A_j = {\it \phi} \hspace{0.25cm}\text{für}\hspace{0.25cm} 1 \le i \ne j \le K .$$
  • In the following, we denote the probability functions with respect to the partitionings  $A_1,\ A_2, \text{...} ,\ A_K$  by
$$P_X^{\hspace{0.15cm}(A)} = \big [ P_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},P_X ( A_K ) \big ],\hspace{0.05cm}\hspace{0.5cm}{\rm where}\hspace{0.15cm} P_X ( A_i ) = \sum_{ x \in A_i} P_X ( x )\hspace{0.05cm},$$
$$Q_X^{\hspace{0.15cm}(A)}= \big [ Q_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},Q_X ( A_K ) \big ],\hspace{0.05cm}\hspace{0.40cm}{\rm where}\hspace{0.15cm} Q_X ( A_i ) = \sum_{ x \in A_i} Q_X ( x )\hspace{0.05cm}. $$

$\text{Please note:}$  The  partitioning inequality  yields the following size relation with respect to the Kullback-Leibler distances:

$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) \hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$


In subtask  (1)  the Kullback-Leibler distance of the two probability functions  $P_X(X)$  and  $Q_X(X)$  for  $X = \{0,\ 1,\ 2\}$   ⇒   $|X| = 3$  is to be determined.

  • Then the set  $X$  is to be partitioned with  $K = 2$  according to
  • $A = \{A_1 ,\ A_2\}$  with  $A_1 =\{0\}$  and  $A_2 = \{ 1,\ 2 \}$ ,
  • $B = \{B_1 ,\ B_2\}$  with  $B_1 =\{1\}$  and  $B_2 = \{ 0,\ 2 \}$,
  • $C = \{C_1 ,\ C_2\}$  with  $C_1 =\{2\}$  and  $C_2 = \{ 0,\ 1\}$.
  • Then the respective Kullback-Leibler distances are to be given:
  • $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
  • $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
  • $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.
  • Finally, subtask  (5)  asks for the conditions that must be satisfied for the equal sign to be true in the above inequality.





Hints:

$$P_X(X) = \big [1/4 , \ 1/2 , \ 1/4 \big ],\hspace{0.5cm} Q_X(X) = \big [1/8, \ 3/4, \ 1/8 \big].$$


Questions

1

Calculate the Kullback-Leibler distance in general.

$ D(P_X \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X) \ = \ $

$\ \rm bit$

2

What is the Kullback-Leibler distance for the partition  $ A_1 = \{0\},\ A_2 = \{1, 2\}$?

$D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } ) \ = \ $

$\ \rm bit$

3

What is the Kullback-Leibler distance for the partition  $ B_1 = \{1\}, \ B_2 = \{0, 2\}$?

$D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } ) \ = \ $

$\ \rm bit$

4

What is the Kullback-Leibler distance for the partition  $ C_1 = \{2\},\ C_2 = \{0, 1\}$?

The same result as for partition  $\rm A$.
The same result as for partition  $\rm B$.
A completely different result.

5

Under which conditions does equality result for general  $K$ ?

  $|X|$  equations must be fulfilled.
For  $x \in A_i$  must hold:   $P_X(x)/Q_X(x) = P_X(A_i)/ Q_X(A_i)$


Solution

(1)  For the Kullback-Leibler distance of the non-partitioned quantities  $X$  and  $Y$  holds:

$$D(P_X \hspace{0.05cm} || \hspace{0.05cm}P_Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm}X} P_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(x)}{P_Y(x)}$$
$$\Rightarrow D(P_X \hspace{0.05cm} || \hspace{0.05cm}P_Y) = \hspace{-0.15cm} \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} + 2 \cdot \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} = \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{2}{3} + \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} (2) = 1- \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} (3) \hspace{0.15cm} \underline {=0.2075\,{\rm (bit)}} \hspace{0.05cm}.$$


(2)  With  $\text{partition }A$   ⇒   $A_1 = \{0\}$ ,  $A_2 = \{ 1 , 2 \}$  we get  $P_X^{ (A) } (X) = \{1/4 , \ 3/4\}$  and  $Q_X^{ (A) } (X) = \{1/8 , \ 7/8\}$.  From this follows:

$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) = \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} + \frac{3}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{3/4}{7/8} =\frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} (2) + \frac{3}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{6}{7} \hspace{0.15cm} \underline {=0.0832\,{\rm (bit)}} \hspace{0.05cm}.$$


(3)  With  $\text{partition } B$   ⇒   $B_1 = \{1\}$ ,  $B_2 = \{ 0 ,\ 2 \}$  the probability functions are  $P_X^{ (B) } (X) = \{1/2 , \ 1/2\}$  und  $Q_X^{ (B) } (X) = \{3/4 , \ 1/4\}$. 

  • Analogous to subtask  (2)  one thus obtains:
$$D(P_X^{\hspace{0.15cm}(B)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(B)}) = \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} + \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{1/4} \hspace{0.15cm} \underline {=0.2075\,{\rm (bit)}} \hspace{0.05cm}.$$
  • The result agrees with that of subtask  (1)    ⇒   With  $\text{partition }B$  the equal sign applies.



(4)  With  $\text{partition } C$   ⇒   $C_1 = \{2\}$ , $C_2 = \{ 0 , \ 1\}$  one obtains  $P_X^{ (C) } (X) = \{1/4, \ 3/4\}$ , $Q_X^{ (C) } (X) = \{1/8, \ 7/8\}$,
i.e. the same functions as for the  $\text{partition }A$   ⇒   solution proposal 1.


(5)  The  $\text{partition }B$  has led to the result  $D(P_X^{ (B) } \hspace{0.05cm} || \hspace{0.05cm}Q_X^{ (B) } ) = D(P_X \hspace{0.05cm} || \hspace{0.05cm}Q_X)$.

  • So for this case
$$\frac{P_X(1)}{Q_X(1)} = \frac{1/2}{3/4} = \frac{2}{3}, \ \frac{P_X(B_1)}{Q_X(B_1)} = \frac{1/2}{3/4} = {2}/{3},$$
$$\frac{P_X(0)}{Q_X(0)} = \frac{1/4}{1/8} = 2, \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2,$$
$$\frac{P_X(2)}{Q_X(2)} = \frac{1/4}{1/8} = 2, \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2.$$
  • It must therefore hold for all  $x \in X$  :
$$\frac{P_X(x)}{Q_X(x)} = \frac{P_X(B_1)}{Q_X(B_1)}, \text{ if } x \in B_1, \hspace{0.5cm}\frac{P_X(x)}{Q_X(x)} = \frac{P_X(B_2)}{Q_X(B_2)}, \text{ if } x \in B_2.$$
  • By generalization, one can see that  both proposed solutions  are correct.