Difference between revisions of "Aufgaben:Exercise 3.6: Partitioning Inequality"

From LNTwww
 
(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen
+
{{quiz-Header|Buchseite=Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:P_ID2812__Inf_A_3_5.png|right|frame|Wahrscheinlichkeitsfunktionen $P_X$, $Q_X$]]
+
[[File:P_ID2812__Inf_A_3_5.png|right|frame|Two probability functions  $P_X$  and  $Q_X$]]
Die ''Kullback–Leibler–Distanz'' (kurz KLD) wird auch in der „Partitionierungsungleichung” (englisch: ''Partition Unequality'') verwendet:  
+
The  '''Kullback–Leibler distance'''  (KLD for short)  is also used in the   "Partition Unequality":
* Wir gehen von der Menge $X =  \{ x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M  \}$ und den Wahrscheinlichkeitsfunktionen
+
* We assume the set  $X =  \{ x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  \}$  and the probability functions
:$$P_X(X) = P_X (  x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M  )\hspace{0.05cm},$$
+
:$$P_X(X) = P_X (  x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  )\hspace{0.05cm},$$
:$$Q_X(X) =Q_X (  x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M  ), $$  
+
:$$Q_X(X) =Q_X (  x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  ), $$  
aus, die „in irgendeiner Form ähnlich” sein sollen.
+
:which are said to be  "similar in some way".
  
* Die Menge $X$ unterteilen wir in die Partitionen $A_1, \text{...} , A_K$ , die zueinander [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen#Disjunkte_Mengen|disjunkt]] sind und ein [[Stochastische_Signaltheorie/Mengentheoretische_Grundlagen#Vollst.C3.A4ndiges_System|vollständiges System]] ergeben:
+
* We divide the set  $X$  into partitions  $A_1, \text{...} ,  A_K$, which are  [[Theory_of_Stochastic_Signals/Mengentheoretische_Grundlagen#Disjunkte_Mengen|disjoint]]  to each other and result in a  [[Theory_of_Stochastic_Signals/Mengentheoretische_Grundlagen#Vollst.C3.A4ndiges_System|complete system]] :
:$$X = \big \{ \hspace{0.05cm} x_1, \hspace{0.05cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.05cm} x_M  \hspace{0.05cm} \big \}.$$
+
:$$\bigcup_{i=1}^{K} = X, \hspace{0.5cm} A_i \cap A_j = {\it \phi} \hspace{0.25cm}\text{für}\hspace{0.25cm} 1 \le i \ne j \le K .$$
  
* Die Wahrscheinlichkeitsfunktionen bezüglich der Partitionierungen $A_1, A_2, \text{...} , A_K$ bezeichnen wir im Folgenden mit
+
* In the following, we denote the probability functions with respect to the partitionings  $A_1,\ A_2, \text{...} ,\ A_K$  by
:$$P_X^{\hspace{0.15cm}(A)} = \big [ P_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},P_X (  A_K  ) \big  ],\hspace{0.05cm}\hspace{0.5cm}{\rm wobei}\hspace{0.15cm} P_X (  A_i  ) = \sum_{ x \in A_i} P_X ( x  )\hspace{0.05cm},$$
+
:$$P_X^{\hspace{0.15cm}(A)} = \big [ P_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},P_X (  A_K  ) \big  ],\hspace{0.05cm}\hspace{0.5cm}{\rm where}\hspace{0.15cm} P_X (  A_i  ) = \sum_{ x \in A_i} P_X ( x  )\hspace{0.05cm},$$
:$$Q_X^{\hspace{0.15cm}(A)}= \big  [ Q_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},Q_X (  A_K  ) \big  ],\hspace{0.05cm}\hspace{0.40cm}{\rm wobei}\hspace{0.15cm} Q_X (  A_i  ) = \sum_{ x \in A_i} Q_X ( x  )\hspace{0.05cm}. $$
+
:$$Q_X^{\hspace{0.15cm}(A)}= \big  [ Q_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},Q_X (  A_K  ) \big  ],\hspace{0.05cm}\hspace{0.40cm}{\rm where}\hspace{0.15cm} Q_X (  A_i  ) = \sum_{ x \in A_i} Q_X ( x  )\hspace{0.05cm}. $$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Bitte beachten Sie:}$  Die '''Partitionierungsungleichung''' liefert folgende Größenrelation hinsichtlich der Kullback–Leibler–Distanzen:
+
$\text{Please note:}$  The  '''partitioning inequality'''  yields the following size relation with respect to the Kullback-Leibler distances:
 
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)})  
 
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)})  
 
\hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$}}
 
\hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$}}
  
  
In Teilaufgabe '''(1)''' soll die Kullback–Leibler–Distanz der beiden Wahrscheinlichkeitsfunktionen $P_X(X)$ und $Q_X(X)$ für $X = \{0, 1, 2\}$  ⇒  $|X| = 3$ ermittelt werden. Anschließend soll die Menge $X$ mit $K = 2$ partitioniert werden entsprechend
+
In subtask  '''(1)'''  the Kullback-Leibler distance of the two probability functions  $P_X(X)$  and  $Q_X(X)$  for  $X = \{0,\ 1,\ 2\}$   ⇒   $|X| = 3$  is to be determined.  
* $A = \{A_1 , A_2\}$  mit  $A_1 =\{0\}$  und $A_2 = \{ 1,2 \}$ ,
 
* $B = \{B_1 , B_2\}$  mit  $B_1 =\{1\}$  und $B_2 = \{ 0,2 \}$,
 
* $C = \{C_1 , C_2\}$  mit  $C_1 =\{2\}$  und $C_2 = \{  0,1\}$,
 
  
 +
*Then the set  $X$  is to be partitioned with  $K = 2$  according to
 +
:* $A = \{A_1 ,\ A_2\}$   with   $A_1 =\{0\}$   and  $A_2 = \{ 1,\ 2 \}$ ,
 +
:* $B = \{B_1 ,\ B_2\}$   with   $B_1 =\{1\}$   and  $B_2 = \{ 0,\ 2 \}$,
 +
:* $C = \{C_1 ,\ C_2\}$   with   $C_1 =\{2\}$   and  $C_2 = \{  0,\ 1\}$.
  
Anschließend sollen die jeweiligen Kullback–Leibler–Distanzen angegeben werden:
+
*Then the respective Kullback-Leibler distances are to be given:
* $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
+
:* $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
* $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
+
:* $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
* $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.
+
:* $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.
  
 +
*Finally, subtask  '''(5)'''  asks for the conditions that must be satisfied for the equal sign to be true in the above inequality.
  
In der Teilaufgabe '''(5)'''  wird schließlich nach den Bedingungen gefragt, damit in der obigen Ungleichung das Gleichheitszeichen zutrifft.
 
  
  
Line 42: Line 43:
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel  [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
+
 
*Insbesondere wird Bezug genommen auf die Seite  [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Relative Entropie – Kullback-Leibler-Distanz]].
+
Hints:  
+
*The exercise belongs to the chapter  [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables|Some preliminary remarks on two-dimensional random variables]].
*Die beiden  Wahrscheinlichkeitsfunktionen können aus obiger Grafik wie folgt abgelesen werden:
+
*In particular, reference is made to the page  [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Informational_divergence_-_Kullback-Leibler_distance|Relative entropy – Kullback-Leibler distance]].
 +
*The two probability functions can be read from the above graph as follows:
 
:$$P_X(X) = \big [1/4 , \ 1/2 , \ 1/4 \big ],\hspace{0.5cm} Q_X(X) = \big [1/8, \ 3/4, \ 1/8 \big].$$
 
:$$P_X(X) = \big [1/4 , \ 1/2 , \ 1/4 \big ],\hspace{0.5cm} Q_X(X) = \big [1/8, \ 3/4, \ 1/8 \big].$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie die Kullback–Leibler–Distanz (KLD) allgemein.
+
{Calculate the Kullback-Leibler distance in general.
 
|type="{}"}
 
|type="{}"}
 
$ D(P_X \hspace{0.05cm} \vert \vert \hspace{0.05cm}  Q_X) \ = \ $ { 0.2075 3% } $\ \rm bit$
 
$ D(P_X \hspace{0.05cm} \vert \vert \hspace{0.05cm}  Q_X) \ = \ $ { 0.2075 3% } $\ \rm bit$
  
{Welche Kullback–Leibler–Distanz ergibt sich für die Partitionierung $ A_1 = \{0\}, A_2 = \{1, 2\}$?
+
{What is the Kullback-Leibler distance for the partition&nbsp; $ A_1 = \{0\},\ A_2 = \{1, 2\}$?
 
|type="{}"}
 
|type="{}"}
 
$D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } ) \ = \ $ { 0.0832 3% } $\ \rm bit$
 
$D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } ) \ = \ $ { 0.0832 3% } $\ \rm bit$
  
{Welche Kullback–Leibler–Distanz  ergibt sich für die Partitionierung $ B_1 = \{1\}, B_2 = \{0, 2\}$?
+
{What is the Kullback-Leibler distance for the partition&nbsp; $ B_1 = \{1\}, \ B_2 = \{0, 2\}$?
 
|type="{}"}
 
|type="{}"}
 
$D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } ) \ = \ $ { 0.2075 3% } $\ \rm bit$
 
$D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } ) \ = \ $ { 0.2075 3% } $\ \rm bit$
  
{Welche Kullback–Leibler–Distanz ergibt sich für die Partitionierung $ C_1 = \{2\}, C_2 = \{0, 1\}$?
+
{What is the Kullback-Leibler distance for the partition&nbsp; $ C_1 = \{2\},\ C_2 = \{0, 1\}$?
 
|type="()"}
 
|type="()"}
+ Das gleiche Ergebnis wie für die Partitionierung $A$.
+
+ The same result as for partition&nbsp; $\rm A$.
- Das gleiche Ergebnis wie für die Partitionierung $B$.
+
- The same result as for partition&nbsp; $\rm B$.
- Ein ganz anderes Ergebnis.
+
- A completely different result.
  
{Unter welchen Bedingungen ergibt sich für allgemeines $K$ die Gleichheit?
+
{Under which conditions does equality result for general&nbsp; $K$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Es müssen $|X|$ Gleichungen erfüllt sein.
+
+ &nbsp; $|X|$&nbsp; equations must be fulfilled.
+ Für $x \in A_i$ muss gelten: &nbsp; $P_X(x)/Q_X(x) = P_X(A_i)/ Q_X(A_i)$
+
+ For&nbsp; $x \in A_i$&nbsp; must hold: &nbsp; $P_X(x)/Q_X(x) = P_X(A_i)/ Q_X(A_i)$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;  Für die Kullback–Leibler–Distanz (KLD) gilt:
+
'''(1)'''&nbsp;  For the Kullback-Leibler distance of the non-partitioned quantities&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; holds:
  
 
:$$D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}P_Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm}X}  
 
:$$D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}P_Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm}X}  
Line 93: Line 95:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
'''(2)'''&nbsp;  Mit der '''Partitionierung A''' &nbsp; &rArr; &nbsp;  $A_1 = \{0\}$ ,  $A_2 = \{ 1 , 2 \}$ erhält man  die Wahrscheinlichkeitsfunktionen $P_X^{ (A) } (X) = \{1/4 , 3/4\}$ und $Q_X^{ (A) } (X) = \{1/8 , 7/8\}$.  Daraus folgt:  
+
 
 +
 
 +
'''(2)'''&nbsp;  With&nbsp; $\text{partition }A$ &nbsp; &rArr; &nbsp;  $A_1 = \{0\}$ ,&nbsp; $A_2 = \{ 1 , 2 \}$&nbsp; we get&nbsp; $P_X^{ (A) } (X) = \{1/4 , \ 3/4\}$&nbsp; and&nbsp; $Q_X^{ (A) } (X) = \{1/8 , \ 7/8\}$.&nbsp; From this follows:
  
 
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) = \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} +
 
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) = \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} +
Line 99: Line 103:
 
\hspace{0.05cm}.$$  
 
\hspace{0.05cm}.$$  
  
'''(3)'''&nbsp; Mit der '''Partitionierung B''' &nbsp; &rArr; &nbsp;  $B_1 = \{1\}$ ,  $B_2 = \{ 0 , 2 \}$ erhält man  die  Wahrscheinlichkeitsfunktionen $P_X^{ (B) } (X) = \{1/2 , 1/2\}$ und $Q_X^{ (B) } (X) = \{3/4 , 1/4\}$. Analog zur Teilaufgabe (2) erhält man so:  
+
 
 +
 
 +
'''(3)'''&nbsp; With&nbsp; $\text{partition } B$ &nbsp; &rArr; &nbsp;  $B_1 = \{1\}$ ,&nbsp; $B_2 = \{ 0 ,\ 2 \}$&nbsp; the probability functions are&nbsp; $P_X^{ (B) } (X) = \{1/2 , \ 1/2\}$&nbsp; und&nbsp; $Q_X^{ (B) } (X) = \{3/4 , \ 1/4\}$.&nbsp;
 +
*Analogous to subtask&nbsp; '''(2)'''&nbsp; one thus obtains:
 
:$$D(P_X^{\hspace{0.15cm}(B)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(B)})  = \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} +
 
:$$D(P_X^{\hspace{0.15cm}(B)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(B)})  = \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} +
 
\frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{1/4} \hspace{0.15cm} \underline {=0.2075\,{\rm (bit)}}
 
\frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{1/4} \hspace{0.15cm} \underline {=0.2075\,{\rm (bit)}}
 
\hspace{0.05cm}.$$  
 
\hspace{0.05cm}.$$  
Das Ergebnis stimmt mit dem der Teilaufgabe (1) überein &nbsp; &rArr; &nbsp; Bei der '''Partitionierung B''' gilt das Gleichheitszeichen.
+
*The result agrees with that of subtask&nbsp; '''(1)'''&nbsp; &nbsp; &rArr; &nbsp; With&nbsp; $\text{partition }B$&nbsp; the equal sign applies.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; With&nbsp; $\text{partition } C$ &nbsp; &rArr; &nbsp;  $C_1 = \{2\}$ ,  $C_2 = \{ 0 , \ 1\}$&nbsp; one obtains&nbsp;  $P_X^{ (C) } (X) = \{1/4, \  3/4\}$  , $Q_X^{ (C) } (X) = \{1/8, \ 7/8\}$, <br>i.e. the same functions as for the&nbsp; $\text{partition }A$ &nbsp; &rArr; &nbsp; <u>solution proposal 1</u>.
  
'''(4)'''&nbsp; Mit der '''Partitionierung C''' &nbsp; &rArr; &nbsp;  $C_1 = \{2\}$ ,  $C_2 = \{ 0 , 1\}$ erhält man  $P_X^{ (C) } (X) = \{1/4, 3/4\}$  , $Q_X^{ (C) } (X) = \{1/8, 7/8\}$, also die gleichen Funktionen wie bei der '''Partitionierung A''' &nbsp; &rArr; &nbsp; <u>Lösungsvorschlag 1</u>.
 
  
  
'''(5)'''&nbsp; Die '''Partitionierung C''' hat zum Ergebnis $D(P_X^{ (B) } \hspace{0.05cm} ||  \hspace{0.05cm}Q_X^{ (B) } ) = D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}Q_X)$ geführt. Für diesen Fall ist also
+
'''(5)'''&nbsp; The&nbsp; $\text{partition }B$&nbsp; has led to the result&nbsp; $D(P_X^{ (B) } \hspace{0.05cm} ||  \hspace{0.05cm}Q_X^{ (B) } ) = D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}Q_X)$.  
 +
*So for this case
 
:$$\frac{P_X(1)}{Q_X(1)} =  \frac{1/2}{3/4} = \frac{2}{3},  \ \frac{P_X(B_1)}{Q_X(B_1)} = \frac{1/2}{3/4} = {2}/{3},$$
 
:$$\frac{P_X(1)}{Q_X(1)} =  \frac{1/2}{3/4} = \frac{2}{3},  \ \frac{P_X(B_1)}{Q_X(B_1)} = \frac{1/2}{3/4} = {2}/{3},$$
 
:$$\frac{P_X(0)}{Q_X(0)} =  \frac{1/4}{1/8} = 2,  \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2,$$
 
:$$\frac{P_X(0)}{Q_X(0)} =  \frac{1/4}{1/8} = 2,  \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2,$$
 
:$$\frac{P_X(2)}{Q_X(2)} =  \frac{1/4}{1/8} = 2,  \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2.$$
 
:$$\frac{P_X(2)}{Q_X(2)} =  \frac{1/4}{1/8} = 2,  \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2.$$
  
Es muss also für alle $x \in X$ gelten :  
+
*It must therefore hold for all&nbsp; $x \in X$&nbsp; :
:$$\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_1)}{Q_X(B_1)}, \text{falls } x \in B_1, \hspace{0.5cm}\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_2)}{Q_X(B_2)}, \text{falls } x \in B_2.$$
+
:$$\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_1)}{Q_X(B_1)}, \text{ if } x \in B_1, \hspace{0.5cm}\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_2)}{Q_X(B_2)}, \text{ if } x \in B_2.$$
  
Durch Verallgemeinerung erhält man, dass <u>beide Lösungsvorschläge</u> richtig sind.
+
*By generalization, one can see that&nbsp; <u>both proposed solutions</u>&nbsp; are correct.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 122: Line 134:
  
  
[[Category:Aufgaben zu Informationstheorie |^3.1 Allgemeines zu 2D-Zufallsgrößen^]]
+
[[Category:Information Theory: Exercises |^3.1 General Information on 2D Random Variables^]]

Latest revision as of 09:15, 24 September 2021

Two probability functions  $P_X$  and  $Q_X$

The  Kullback–Leibler distance  (KLD for short)  is also used in the  "Partition Unequality":

  • We assume the set  $X = \{ x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M \}$  and the probability functions
$$P_X(X) = P_X ( x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M )\hspace{0.05cm},$$
$$Q_X(X) =Q_X ( x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M ), $$
which are said to be  "similar in some way".
  • We divide the set  $X$  into partitions  $A_1, \text{...} ,  A_K$, which are  disjoint  to each other and result in a  complete system :
$$\bigcup_{i=1}^{K} = X, \hspace{0.5cm} A_i \cap A_j = {\it \phi} \hspace{0.25cm}\text{für}\hspace{0.25cm} 1 \le i \ne j \le K .$$
  • In the following, we denote the probability functions with respect to the partitionings  $A_1,\ A_2, \text{...} ,\ A_K$  by
$$P_X^{\hspace{0.15cm}(A)} = \big [ P_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},P_X ( A_K ) \big ],\hspace{0.05cm}\hspace{0.5cm}{\rm where}\hspace{0.15cm} P_X ( A_i ) = \sum_{ x \in A_i} P_X ( x )\hspace{0.05cm},$$
$$Q_X^{\hspace{0.15cm}(A)}= \big [ Q_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},Q_X ( A_K ) \big ],\hspace{0.05cm}\hspace{0.40cm}{\rm where}\hspace{0.15cm} Q_X ( A_i ) = \sum_{ x \in A_i} Q_X ( x )\hspace{0.05cm}. $$

$\text{Please note:}$  The  partitioning inequality  yields the following size relation with respect to the Kullback-Leibler distances:

$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) \hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$


In subtask  (1)  the Kullback-Leibler distance of the two probability functions  $P_X(X)$  and  $Q_X(X)$  for  $X = \{0,\ 1,\ 2\}$   ⇒   $|X| = 3$  is to be determined.

  • Then the set  $X$  is to be partitioned with  $K = 2$  according to
  • $A = \{A_1 ,\ A_2\}$  with  $A_1 =\{0\}$  and  $A_2 = \{ 1,\ 2 \}$ ,
  • $B = \{B_1 ,\ B_2\}$  with  $B_1 =\{1\}$  and  $B_2 = \{ 0,\ 2 \}$,
  • $C = \{C_1 ,\ C_2\}$  with  $C_1 =\{2\}$  and  $C_2 = \{ 0,\ 1\}$.
  • Then the respective Kullback-Leibler distances are to be given:
  • $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
  • $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
  • $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.
  • Finally, subtask  (5)  asks for the conditions that must be satisfied for the equal sign to be true in the above inequality.





Hints:

$$P_X(X) = \big [1/4 , \ 1/2 , \ 1/4 \big ],\hspace{0.5cm} Q_X(X) = \big [1/8, \ 3/4, \ 1/8 \big].$$


Questions

1

Calculate the Kullback-Leibler distance in general.

$ D(P_X \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X) \ = \ $

$\ \rm bit$

2

What is the Kullback-Leibler distance for the partition  $ A_1 = \{0\},\ A_2 = \{1, 2\}$?

$D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } ) \ = \ $

$\ \rm bit$

3

What is the Kullback-Leibler distance for the partition  $ B_1 = \{1\}, \ B_2 = \{0, 2\}$?

$D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } ) \ = \ $

$\ \rm bit$

4

What is the Kullback-Leibler distance for the partition  $ C_1 = \{2\},\ C_2 = \{0, 1\}$?

The same result as for partition  $\rm A$.
The same result as for partition  $\rm B$.
A completely different result.

5

Under which conditions does equality result for general  $K$ ?

  $|X|$  equations must be fulfilled.
For  $x \in A_i$  must hold:   $P_X(x)/Q_X(x) = P_X(A_i)/ Q_X(A_i)$


Solution

(1)  For the Kullback-Leibler distance of the non-partitioned quantities  $X$  and  $Y$  holds:

$$D(P_X \hspace{0.05cm} || \hspace{0.05cm}P_Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm}X} P_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(x)}{P_Y(x)}$$
$$\Rightarrow D(P_X \hspace{0.05cm} || \hspace{0.05cm}P_Y) = \hspace{-0.15cm} \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} + 2 \cdot \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} = \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{2}{3} + \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} (2) = 1- \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} (3) \hspace{0.15cm} \underline {=0.2075\,{\rm (bit)}} \hspace{0.05cm}.$$


(2)  With  $\text{partition }A$   ⇒   $A_1 = \{0\}$ ,  $A_2 = \{ 1 , 2 \}$  we get  $P_X^{ (A) } (X) = \{1/4 , \ 3/4\}$  and  $Q_X^{ (A) } (X) = \{1/8 , \ 7/8\}$.  From this follows:

$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) = \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} + \frac{3}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{3/4}{7/8} =\frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} (2) + \frac{3}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{6}{7} \hspace{0.15cm} \underline {=0.0832\,{\rm (bit)}} \hspace{0.05cm}.$$


(3)  With  $\text{partition } B$   ⇒   $B_1 = \{1\}$ ,  $B_2 = \{ 0 ,\ 2 \}$  the probability functions are  $P_X^{ (B) } (X) = \{1/2 , \ 1/2\}$  und  $Q_X^{ (B) } (X) = \{3/4 , \ 1/4\}$. 

  • Analogous to subtask  (2)  one thus obtains:
$$D(P_X^{\hspace{0.15cm}(B)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(B)}) = \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} + \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{1/4} \hspace{0.15cm} \underline {=0.2075\,{\rm (bit)}} \hspace{0.05cm}.$$
  • The result agrees with that of subtask  (1)    ⇒   With  $\text{partition }B$  the equal sign applies.



(4)  With  $\text{partition } C$   ⇒   $C_1 = \{2\}$ , $C_2 = \{ 0 , \ 1\}$  one obtains  $P_X^{ (C) } (X) = \{1/4, \ 3/4\}$ , $Q_X^{ (C) } (X) = \{1/8, \ 7/8\}$,
i.e. the same functions as for the  $\text{partition }A$   ⇒   solution proposal 1.


(5)  The  $\text{partition }B$  has led to the result  $D(P_X^{ (B) } \hspace{0.05cm} || \hspace{0.05cm}Q_X^{ (B) } ) = D(P_X \hspace{0.05cm} || \hspace{0.05cm}Q_X)$.

  • So for this case
$$\frac{P_X(1)}{Q_X(1)} = \frac{1/2}{3/4} = \frac{2}{3}, \ \frac{P_X(B_1)}{Q_X(B_1)} = \frac{1/2}{3/4} = {2}/{3},$$
$$\frac{P_X(0)}{Q_X(0)} = \frac{1/4}{1/8} = 2, \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2,$$
$$\frac{P_X(2)}{Q_X(2)} = \frac{1/4}{1/8} = 2, \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2.$$
  • It must therefore hold for all  $x \in X$  :
$$\frac{P_X(x)}{Q_X(x)} = \frac{P_X(B_1)}{Q_X(B_1)}, \text{ if } x \in B_1, \hspace{0.5cm}\frac{P_X(x)}{Q_X(x)} = \frac{P_X(B_2)}{Q_X(B_2)}, \text{ if } x \in B_2.$$
  • By generalization, one can see that  both proposed solutions  are correct.