Difference between revisions of "Aufgaben:Exercise 3.6: Partitioning Inequality"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Informationstheorie" to "Category:Information Theory: Exercises")
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Einige Vorbemerkungen zu zweidimensionalen Zufallsgrößen
+
{{quiz-Header|Buchseite=Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:P_ID2812__Inf_A_3_5.png|right|frame|Wahrscheinlichkeitsfunktionen  $P_X$,  $Q_X$]]
+
[[File:P_ID2812__Inf_A_3_5.png|right|frame|Two probability functions  $P_X$  and  $Q_X$]]
Die  ''Kullback–Leibler–Distanz''  (kurz KLD) wird auch in der „Partitionierungsungleichung”  (englisch:  ''Partition Unequality'') verwendet:  
+
The  '''Kullback–Leibler distance'''  (KLD for short)  is also used in the  "Partition Unequality":
* Wir gehen von der Menge  $X =  \{ x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  \}$  und den Wahrscheinlichkeitsfunktionen
+
* We assume the set  $X =  \{ x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  \}$  and the probability functions
 
:$$P_X(X) = P_X (  x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  )\hspace{0.05cm},$$
 
:$$P_X(X) = P_X (  x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  )\hspace{0.05cm},$$
 
:$$Q_X(X) =Q_X (  x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  ), $$  
 
:$$Q_X(X) =Q_X (  x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M  ), $$  
:aus, die „in irgendeiner Form ähnlich” sein sollen.
+
:which are said to be  "similar in some way".
  
* Die Menge  $X$  unterteilen wir in die Partitionen  $A_1, \text{...} ,  A_K$, die zueinander  [[Theory_of_Stochastic_Signals/Mengentheoretische_Grundlagen#Disjunkte_Mengen|disjunkt]]  sind und ein  [[Theory_of_Stochastic_Signals/Mengentheoretische_Grundlagen#Vollst.C3.A4ndiges_System|vollständiges System]]  ergeben:
+
* We divide the set  $X$  into partitions  $A_1, \text{...} ,  A_K$, which are  [[Theory_of_Stochastic_Signals/Mengentheoretische_Grundlagen#Disjunkte_Mengen|disjoint]]  to each other and result in a  [[Theory_of_Stochastic_Signals/Mengentheoretische_Grundlagen#Vollst.C3.A4ndiges_System|complete system]] :
 
:$$\bigcup_{i=1}^{K} = X, \hspace{0.5cm} A_i \cap A_j = {\it \phi} \hspace{0.25cm}\text{für}\hspace{0.25cm} 1 \le i \ne j \le K .$$
 
:$$\bigcup_{i=1}^{K} = X, \hspace{0.5cm} A_i \cap A_j = {\it \phi} \hspace{0.25cm}\text{für}\hspace{0.25cm} 1 \le i \ne j \le K .$$
  
* Die Wahrscheinlichkeitsfunktionen bezüglich der Partitionierungen  $A_1,\ A_2, \text{...} ,\ A_K$  bezeichnen wir im Folgenden mit
+
* In the following, we denote the probability functions with respect to the partitionings  $A_1,\ A_2, \text{...} ,\ A_K$  by
:$$P_X^{\hspace{0.15cm}(A)} = \big [ P_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},P_X (  A_K  ) \big  ],\hspace{0.05cm}\hspace{0.5cm}{\rm wobei}\hspace{0.15cm} P_X (  A_i  ) = \sum_{ x \in A_i} P_X ( x  )\hspace{0.05cm},$$
+
:$$P_X^{\hspace{0.15cm}(A)} = \big [ P_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},P_X (  A_K  ) \big  ],\hspace{0.05cm}\hspace{0.5cm}{\rm where}\hspace{0.15cm} P_X (  A_i  ) = \sum_{ x \in A_i} P_X ( x  )\hspace{0.05cm},$$
:$$Q_X^{\hspace{0.15cm}(A)}= \big  [ Q_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},Q_X (  A_K  ) \big  ],\hspace{0.05cm}\hspace{0.40cm}{\rm wobei}\hspace{0.15cm} Q_X (  A_i  ) = \sum_{ x \in A_i} Q_X ( x  )\hspace{0.05cm}. $$
+
:$$Q_X^{\hspace{0.15cm}(A)}= \big  [ Q_X (  A_1  )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},Q_X (  A_K  ) \big  ],\hspace{0.05cm}\hspace{0.40cm}{\rm where}\hspace{0.15cm} Q_X (  A_i  ) = \sum_{ x \in A_i} Q_X ( x  )\hspace{0.05cm}. $$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Bitte beachten Sie:}$  Die  '''Partitionierungsungleichung'''  liefert  hinsichtlich der Kullback–Leibler–Distanzen folgende Größenrelation:
+
$\text{Please note:}$  The  '''partitioning inequality'''  yields the following size relation with respect to the Kullback-Leibler distances:
 
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)})  
 
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)})  
 
\hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$}}
 
\hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$}}
  
  
In Teilaufgabe  '''(1)'''  soll die Kullback–Leibler–Distanz der beiden Wahrscheinlichkeitsfunktionen  $P_X(X)$  und  $Q_X(X)$  für  $X = \{0,\ 1,\ 2\}$   ⇒   $|X| = 3$ ermittelt werden.  
+
In subtask  '''(1)'''  the Kullback-Leibler distance of the two probability functions  $P_X(X)$  and  $Q_X(X)$  for  $X = \{0,\ 1,\ 2\}$   ⇒   $|X| = 3$  is to be determined.  
  
*Danach soll die Menge  $X$  mit  $K = 2$  partitioniert werden entsprechend
+
*Then the set  $X$  is to be partitioned with  $K = 2$  according to
:* $A = \{A_1 ,\ A_2\}$   mit   $A_1 =\{0\}$   und  $A_2 = \{ 1,\ 2 \}$ ,  
+
:* $A = \{A_1 ,\ A_2\}$   with   $A_1 =\{0\}$   and  $A_2 = \{ 1,\ 2 \}$ ,  
:* $B = \{B_1 ,\ B_2\}$   mit   $B_1 =\{1\}$   und  $B_2 = \{ 0,\ 2 \}$,  
+
:* $B = \{B_1 ,\ B_2\}$   with   $B_1 =\{1\}$   and  $B_2 = \{ 0,\ 2 \}$,  
:* $C = \{C_1 ,\ C_2\}$   mit   $C_1 =\{2\}$   und  $C_2 = \{  0,\ 1\}$,
+
:* $C = \{C_1 ,\ C_2\}$   with   $C_1 =\{2\}$   and  $C_2 = \{  0,\ 1\}$.
  
*Anschließend sollen die jeweiligen Kullback–Leibler–Distanzen angegeben werden:
+
*Then the respective Kullback-Leibler distances are to be given:
 
:* $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
 
:* $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
 
:* $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
 
:* $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
 
:* $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.
 
:* $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.
  
*In der Teilaufgabe  '''(5)'''  wird schließlich nach den Bedingungen gefragt, die erfüllt sein müssen,  damit in der obigen Ungleichung das Gleichheitszeichen zutrifft.
+
*Finally, subtask  '''(5)'''  asks for the conditions that must be satisfied for the equal sign to be true in the above inequality.
  
  
Line 45: Line 45:
  
  
''Hinweise:''
+
Hints:  
*Die Aufgabe gehört zum  Kapitel  [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
+
*The exercise belongs to the chapter  [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables|Some preliminary remarks on two-dimensional random variables]].
*Insbesondere wird Bezug genommen auf die Seite  [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Relative_Entropie_.E2.80.93_Kullback.E2.80.93Leibler.E2.80.93Distanz|Relative Entropie – Kullback-Leibler-Distanz]].
+
*In particular, reference is made to the page  [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Informational_divergence_-_Kullback-Leibler_distance|Relative entropy – Kullback-Leibler distance]].
+
*The two probability functions can be read from the above graph as follows:
*Die beiden  Wahrscheinlichkeitsfunktionen können aus obiger Grafik wie folgt abgelesen werden:
 
 
:$$P_X(X) = \big [1/4 , \ 1/2 , \ 1/4 \big ],\hspace{0.5cm} Q_X(X) = \big [1/8, \ 3/4, \ 1/8 \big].$$
 
:$$P_X(X) = \big [1/4 , \ 1/2 , \ 1/4 \big ],\hspace{0.5cm} Q_X(X) = \big [1/8, \ 3/4, \ 1/8 \big].$$
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie die Kullback–Leibler–Distanz (KLD) allgemein.
+
{Calculate the Kullback-Leibler distance in general.
 
|type="{}"}
 
|type="{}"}
 
$ D(P_X \hspace{0.05cm} \vert \vert \hspace{0.05cm}  Q_X) \ = \ $ { 0.2075 3% } $\ \rm bit$
 
$ D(P_X \hspace{0.05cm} \vert \vert \hspace{0.05cm}  Q_X) \ = \ $ { 0.2075 3% } $\ \rm bit$
  
{Welche Kullback–Leibler–Distanz ergibt sich für die Partitionierung&nbsp;  $ A_1 = \{0\},\ A_2 = \{1, 2\}$?
+
{What is the Kullback-Leibler distance for the partition&nbsp;  $ A_1 = \{0\},\ A_2 = \{1, 2\}$?
 
|type="{}"}
 
|type="{}"}
 
$D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } ) \ = \ $ { 0.0832 3% } $\ \rm bit$
 
$D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } ) \ = \ $ { 0.0832 3% } $\ \rm bit$
  
{Welche Kullback–Leibler–Distanz  ergibt sich für die Partitionierung&nbsp;  $ B_1 = \{1\}, \ B_2 = \{0, 2\}$?
+
{What is the Kullback-Leibler distance for the partition&nbsp;  $ B_1 = \{1\}, \ B_2 = \{0, 2\}$?
 
|type="{}"}
 
|type="{}"}
 
$D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } ) \ = \ $ { 0.2075 3% } $\ \rm bit$
 
$D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } ) \ = \ $ { 0.2075 3% } $\ \rm bit$
  
{Welche Kullback–Leibler–Distanz ergibt sich für die Partitionierung&nbsp;  $ C_1 = \{2\},\ C_2 = \{0, 1\}$?
+
{What is the Kullback-Leibler distance for the partition&nbsp;  $ C_1 = \{2\},\ C_2 = \{0, 1\}$?
 
|type="()"}
 
|type="()"}
+ Das gleiche Ergebnis wie für die Partitionierung&nbsp; $A$.
+
+ The same result as for partition&nbsp; $\rm A$.
- Das gleiche Ergebnis wie für die Partitionierung&nbsp; $B$.
+
- The same result as for partition&nbsp; $\rm B$.
- Ein ganz anderes Ergebnis.
+
- A completely different result.
  
{Unter welchen Bedingungen ergibt sich für allgemeines&nbsp; $K$&nbsp; die Gleichheit?
+
{Under which conditions does equality result for general&nbsp; $K$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Es müssen&nbsp; $|X|$&nbsp; Gleichungen erfüllt sein.
+
+ &nbsp; $|X|$&nbsp; equations must be fulfilled.
+ Für&nbsp; $x \in A_i$&nbsp; muss gelten: &nbsp; $P_X(x)/Q_X(x) = P_X(A_i)/ Q_X(A_i)$
+
+ For&nbsp; $x \in A_i$&nbsp; must hold: &nbsp; $P_X(x)/Q_X(x) = P_X(A_i)/ Q_X(A_i)$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;  Für die Kullback–Leibler–Distanz gilt:
+
'''(1)'''&nbsp;  For the Kullback-Leibler distance of the non-partitioned quantities&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; holds:
  
 
:$$D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}P_Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm}X}  
 
:$$D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}P_Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm}X}  
Line 98: Line 97:
  
  
'''(2)'''&nbsp;  Mit der&nbsp; $\text{Partitionierung A}$ &nbsp; &rArr; &nbsp;  $A_1 = \{0\}$ ,&nbsp;  $A_2 = \{ 1 , 2 \}$&nbsp; erhält man&nbsp;  $P_X^{ (A) } (X) = \{1/4 , \ 3/4\}$&nbsp; und&nbsp; $Q_X^{ (A) } (X) = \{1/8 , \ 7/8\}$.&nbsp;  Daraus folgt:  
+
'''(2)'''&nbsp;  With&nbsp; $\text{partition }A$ &nbsp; &rArr; &nbsp;  $A_1 = \{0\}$ ,&nbsp;  $A_2 = \{ 1 , 2 \}$&nbsp; we get&nbsp;  $P_X^{ (A) } (X) = \{1/4 , \ 3/4\}$&nbsp; and&nbsp; $Q_X^{ (A) } (X) = \{1/8 , \ 7/8\}$.&nbsp;  From this follows:
  
 
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) = \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} +
 
:$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) = \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} +
Line 106: Line 105:
  
  
'''(3)'''&nbsp; Mit der&nbsp; $\text{Partitionierung B}$ &nbsp; &rArr; &nbsp;  $B_1 = \{1\}$ ,&nbsp;  $B_2 = \{ 0 ,\ 2 \}$&nbsp; lauten  die  Wahrscheinlichkeitsfunktionen&nbsp;  $P_X^{ (B) } (X) = \{1/2 , \ 1/2\}$&nbsp; und&nbsp; $Q_X^{ (B) } (X) = \{3/4 , \ 1/4\}$.&nbsp;  
+
'''(3)'''&nbsp; With&nbsp; $\text{partition } B$ &nbsp; &rArr; &nbsp;  $B_1 = \{1\}$ ,&nbsp;  $B_2 = \{ 0 ,\ 2 \}$&nbsp; the probability functions are&nbsp;  $P_X^{ (B) } (X) = \{1/2 , \ 1/2\}$&nbsp; und&nbsp; $Q_X^{ (B) } (X) = \{3/4 , \ 1/4\}$.&nbsp;  
*Analog zur Teilaufgabe&nbsp; '''(2)'''&nbsp; erhält man so:  
+
*Analogous to subtask&nbsp; '''(2)'''&nbsp; one thus obtains:
 
:$$D(P_X^{\hspace{0.15cm}(B)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(B)})  = \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} +
 
:$$D(P_X^{\hspace{0.15cm}(B)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(B)})  = \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} +
 
\frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{1/4} \hspace{0.15cm} \underline {=0.2075\,{\rm (bit)}}
 
\frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{1/4} \hspace{0.15cm} \underline {=0.2075\,{\rm (bit)}}
 
\hspace{0.05cm}.$$  
 
\hspace{0.05cm}.$$  
*Das Ergebnis stimmt mit dem der Teilaufgabe&nbsp; '''(1)'''&nbsp; überein &nbsp; &rArr; &nbsp; Bei der&nbsp; $\text{Partitionierung B}$&nbsp; gilt das Gleichheitszeichen.
+
*The result agrees with that of subtask&nbsp; '''(1)'''&nbsp; &nbsp; &rArr; &nbsp; With&nbsp; $\text{partition }B$&nbsp; the equal sign applies.
  
  
  
  
'''(4)'''&nbsp; Mit der&nbsp; $\text{Partitionierung C}$ &nbsp; &rArr; &nbsp;  $C_1 = \{2\}$ ,  $C_2 = \{ 0 , \ 1\}$&nbsp; erhält man&nbsp;  $P_X^{ (C) } (X) = \{1/4, \  3/4\}$  , $Q_X^{ (C) } (X) = \{1/8, \ 7/8\}$, <br>also die gleichen Funktionen wie bei der&nbsp; $\text{Partitionierung A}$ &nbsp; &rArr; &nbsp; <u>Lösungsvorschlag 1</u>.
+
'''(4)'''&nbsp; With&nbsp; $\text{partition } C$ &nbsp; &rArr; &nbsp;  $C_1 = \{2\}$ ,  $C_2 = \{ 0 , \ 1\}$&nbsp; one obtains&nbsp;  $P_X^{ (C) } (X) = \{1/4, \  3/4\}$  , $Q_X^{ (C) } (X) = \{1/8, \ 7/8\}$, <br>i.e. the same functions as for the&nbsp; $\text{partition }A$ &nbsp; &rArr; &nbsp; <u>solution proposal 1</u>.
  
  
  
'''(5)'''&nbsp; Die&nbsp; $\text{Partitionierung C}$&nbsp; hat zum Ergebnis&nbsp; $D(P_X^{ (B) } \hspace{0.05cm} ||  \hspace{0.05cm}Q_X^{ (B) } ) = D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}Q_X)$ geführt.  
+
'''(5)'''&nbsp; The&nbsp; $\text{partition }B$&nbsp; has led to the result&nbsp; $D(P_X^{ (B) } \hspace{0.05cm} ||  \hspace{0.05cm}Q_X^{ (B) } ) = D(P_X \hspace{0.05cm} ||  \hspace{0.05cm}Q_X)$.  
*Für diesen Fall ist also
+
*So for this case
 
:$$\frac{P_X(1)}{Q_X(1)} =  \frac{1/2}{3/4} = \frac{2}{3},  \ \frac{P_X(B_1)}{Q_X(B_1)} = \frac{1/2}{3/4} = {2}/{3},$$
 
:$$\frac{P_X(1)}{Q_X(1)} =  \frac{1/2}{3/4} = \frac{2}{3},  \ \frac{P_X(B_1)}{Q_X(B_1)} = \frac{1/2}{3/4} = {2}/{3},$$
 
:$$\frac{P_X(0)}{Q_X(0)} =  \frac{1/4}{1/8} = 2,  \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2,$$
 
:$$\frac{P_X(0)}{Q_X(0)} =  \frac{1/4}{1/8} = 2,  \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2,$$
 
:$$\frac{P_X(2)}{Q_X(2)} =  \frac{1/4}{1/8} = 2,  \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2.$$
 
:$$\frac{P_X(2)}{Q_X(2)} =  \frac{1/4}{1/8} = 2,  \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2.$$
  
*Es muss demnach für alle&nbsp; $x \in X$&nbsp; gelten :  
+
*It must therefore hold for all&nbsp; $x \in X$&nbsp; :
:$$\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_1)}{Q_X(B_1)}, \text{falls } x \in B_1, \hspace{0.5cm}\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_2)}{Q_X(B_2)}, \text{falls } x \in B_2.$$
+
:$$\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_1)}{Q_X(B_1)}, \text{ if } x \in B_1, \hspace{0.5cm}\frac{P_X(x)}{Q_X(x)}  = \frac{P_X(B_2)}{Q_X(B_2)}, \text{ if } x \in B_2.$$
  
*Durch Verallgemeinerung erkennt man, dass&nbsp; <u>beide Lösungsvorschläge</u>&nbsp; richtig sind.
+
*By generalization, one can see that&nbsp; <u>both proposed solutions</u>&nbsp; are correct.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 135: Line 134:
  
  
[[Category:Information Theory: Exercises |^3.1 Allgemeines zu 2D-Zufallsgrößen^]]
+
[[Category:Information Theory: Exercises |^3.1 General Information on 2D Random Variables^]]

Latest revision as of 09:15, 24 September 2021

Two probability functions  $P_X$  and  $Q_X$

The  Kullback–Leibler distance  (KLD for short)  is also used in the  "Partition Unequality":

  • We assume the set  $X = \{ x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M \}$  and the probability functions
$$P_X(X) = P_X ( x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M )\hspace{0.05cm},$$
$$Q_X(X) =Q_X ( x_1, \hspace{0.15cm} x_2, \text{...} \hspace{0.05cm}, \hspace{0.15cm} x_M ), $$
which are said to be  "similar in some way".
  • We divide the set  $X$  into partitions  $A_1, \text{...} ,  A_K$, which are  disjoint  to each other and result in a  complete system :
$$\bigcup_{i=1}^{K} = X, \hspace{0.5cm} A_i \cap A_j = {\it \phi} \hspace{0.25cm}\text{für}\hspace{0.25cm} 1 \le i \ne j \le K .$$
  • In the following, we denote the probability functions with respect to the partitionings  $A_1,\ A_2, \text{...} ,\ A_K$  by
$$P_X^{\hspace{0.15cm}(A)} = \big [ P_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},P_X ( A_K ) \big ],\hspace{0.05cm}\hspace{0.5cm}{\rm where}\hspace{0.15cm} P_X ( A_i ) = \sum_{ x \in A_i} P_X ( x )\hspace{0.05cm},$$
$$Q_X^{\hspace{0.15cm}(A)}= \big [ Q_X ( A_1 )\hspace{0.05cm}, \hspace{0.05cm}\text{...}\hspace{0.1cm},Q_X ( A_K ) \big ],\hspace{0.05cm}\hspace{0.40cm}{\rm where}\hspace{0.15cm} Q_X ( A_i ) = \sum_{ x \in A_i} Q_X ( x )\hspace{0.05cm}. $$

$\text{Please note:}$  The  partitioning inequality  yields the following size relation with respect to the Kullback-Leibler distances:

$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) \hspace{0.25cm}\le \hspace{0.25cm}D(P_X \hspace{0.05cm}\vert \vert \hspace{0.05cm} Q_X) \hspace{0.05cm}.$$


In subtask  (1)  the Kullback-Leibler distance of the two probability functions  $P_X(X)$  and  $Q_X(X)$  for  $X = \{0,\ 1,\ 2\}$   ⇒   $|X| = 3$  is to be determined.

  • Then the set  $X$  is to be partitioned with  $K = 2$  according to
  • $A = \{A_1 ,\ A_2\}$  with  $A_1 =\{0\}$  and  $A_2 = \{ 1,\ 2 \}$ ,
  • $B = \{B_1 ,\ B_2\}$  with  $B_1 =\{1\}$  and  $B_2 = \{ 0,\ 2 \}$,
  • $C = \{C_1 ,\ C_2\}$  with  $C_1 =\{2\}$  and  $C_2 = \{ 0,\ 1\}$.
  • Then the respective Kullback-Leibler distances are to be given:
  • $D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } )$,
  • $D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } )$,
  • $D(P_X^{ (C) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (C) } )$.
  • Finally, subtask  (5)  asks for the conditions that must be satisfied for the equal sign to be true in the above inequality.





Hints:

$$P_X(X) = \big [1/4 , \ 1/2 , \ 1/4 \big ],\hspace{0.5cm} Q_X(X) = \big [1/8, \ 3/4, \ 1/8 \big].$$


Questions

1

Calculate the Kullback-Leibler distance in general.

$ D(P_X \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X) \ = \ $

$\ \rm bit$

2

What is the Kullback-Leibler distance for the partition  $ A_1 = \{0\},\ A_2 = \{1, 2\}$?

$D(P_X^{ (A) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (A) } ) \ = \ $

$\ \rm bit$

3

What is the Kullback-Leibler distance for the partition  $ B_1 = \{1\}, \ B_2 = \{0, 2\}$?

$D(P_X^{ (B) } \hspace{0.05cm} \vert \vert \hspace{0.05cm} Q_X^{ (B) } ) \ = \ $

$\ \rm bit$

4

What is the Kullback-Leibler distance for the partition  $ C_1 = \{2\},\ C_2 = \{0, 1\}$?

The same result as for partition  $\rm A$.
The same result as for partition  $\rm B$.
A completely different result.

5

Under which conditions does equality result for general  $K$ ?

  $|X|$  equations must be fulfilled.
For  $x \in A_i$  must hold:   $P_X(x)/Q_X(x) = P_X(A_i)/ Q_X(A_i)$


Solution

(1)  For the Kullback-Leibler distance of the non-partitioned quantities  $X$  and  $Y$  holds:

$$D(P_X \hspace{0.05cm} || \hspace{0.05cm}P_Y) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{P_X(X)}{P_Y(X)}\right ] \hspace{0.2cm}=\hspace{0.2cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm}X} P_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_X(x)}{P_Y(x)}$$
$$\Rightarrow D(P_X \hspace{0.05cm} || \hspace{0.05cm}P_Y) = \hspace{-0.15cm} \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} + 2 \cdot \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} = \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{2}{3} + \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} (2) = 1- \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} (3) \hspace{0.15cm} \underline {=0.2075\,{\rm (bit)}} \hspace{0.05cm}.$$


(2)  With  $\text{partition }A$   ⇒   $A_1 = \{0\}$ ,  $A_2 = \{ 1 , 2 \}$  we get  $P_X^{ (A) } (X) = \{1/4 , \ 3/4\}$  and  $Q_X^{ (A) } (X) = \{1/8 , \ 7/8\}$.  From this follows:

$$D(P_X^{\hspace{0.15cm}(A)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(A)}) = \frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/8} + \frac{3}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{3/4}{7/8} =\frac{1}{4}\cdot {\rm log}_2 \hspace{0.1cm} (2) + \frac{3}{4}\cdot {\rm log}_2 \hspace{0.1cm} \frac{6}{7} \hspace{0.15cm} \underline {=0.0832\,{\rm (bit)}} \hspace{0.05cm}.$$


(3)  With  $\text{partition } B$   ⇒   $B_1 = \{1\}$ ,  $B_2 = \{ 0 ,\ 2 \}$  the probability functions are  $P_X^{ (B) } (X) = \{1/2 , \ 1/2\}$  und  $Q_X^{ (B) } (X) = \{3/4 , \ 1/4\}$. 

  • Analogous to subtask  (2)  one thus obtains:
$$D(P_X^{\hspace{0.15cm}(B)} \hspace{0.05cm}|| \hspace{0.05cm} Q_X^{\hspace{0.15cm}(B)}) = \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{3/4} + \frac{1}{2}\cdot {\rm log}_2 \hspace{0.1cm} \frac{1/2}{1/4} \hspace{0.15cm} \underline {=0.2075\,{\rm (bit)}} \hspace{0.05cm}.$$
  • The result agrees with that of subtask  (1)    ⇒   With  $\text{partition }B$  the equal sign applies.



(4)  With  $\text{partition } C$   ⇒   $C_1 = \{2\}$ , $C_2 = \{ 0 , \ 1\}$  one obtains  $P_X^{ (C) } (X) = \{1/4, \ 3/4\}$ , $Q_X^{ (C) } (X) = \{1/8, \ 7/8\}$,
i.e. the same functions as for the  $\text{partition }A$   ⇒   solution proposal 1.


(5)  The  $\text{partition }B$  has led to the result  $D(P_X^{ (B) } \hspace{0.05cm} || \hspace{0.05cm}Q_X^{ (B) } ) = D(P_X \hspace{0.05cm} || \hspace{0.05cm}Q_X)$.

  • So for this case
$$\frac{P_X(1)}{Q_X(1)} = \frac{1/2}{3/4} = \frac{2}{3}, \ \frac{P_X(B_1)}{Q_X(B_1)} = \frac{1/2}{3/4} = {2}/{3},$$
$$\frac{P_X(0)}{Q_X(0)} = \frac{1/4}{1/8} = 2, \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2,$$
$$\frac{P_X(2)}{Q_X(2)} = \frac{1/4}{1/8} = 2, \ \frac{P_X(B_2)}{Q_X(B_2)} = \frac{1/2}{1/4} = 2.$$
  • It must therefore hold for all  $x \in X$  :
$$\frac{P_X(x)}{Q_X(x)} = \frac{P_X(B_1)}{Q_X(B_1)}, \text{ if } x \in B_1, \hspace{0.5cm}\frac{P_X(x)}{Q_X(x)} = \frac{P_X(B_2)}{Q_X(B_2)}, \text{ if } x \in B_2.$$
  • By generalization, one can see that  both proposed solutions  are correct.