Difference between revisions of "Aufgaben:Exercise 4.2: Triangular PDF"

From LNTwww
Line 2: Line 2:
 
}}
 
}}
  
[[File:P_ID2865__Inf_A_4_2.png|right|frame|Two triangular PDF]]
+
[[File:P_ID2865__Inf_A_4_2.png|right|frame|Two triangular PDFs]]
Two probability density functions (PDF) with a triangular shape are considered.
+
Two probability density functions  $\rm (PDF)$  with triangular shapes are considered.
* The random variable   $X$   is limited to the range of values from   $0$   to   $1$ ,   and it holds for the PDF (upper sketch):
+
* The random variable   $X$   is limited to the range from   $0$   to   $1$ ,   and it holds for the PDF (upper sketch):
 
:$$f_X(x) = \left\{ \begin{array}{c} 2x \\  0 \\  \end{array} \right. \begin{array}{*{20}c}  {\rm{f\ddot{u}r}} \hspace{0.1cm} 0 \le x \le 1 \\    {\rm else} \\ \end{array}
 
:$$f_X(x) = \left\{ \begin{array}{c} 2x \\  0 \\  \end{array} \right. \begin{array}{*{20}c}  {\rm{f\ddot{u}r}} \hspace{0.1cm} 0 \le x \le 1 \\    {\rm else} \\ \end{array}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 13: Line 13:
 
For both random variables, the   [[Information_Theory/Differentielle_Entropie|differential  entropy]]  is to be determined in each case.
 
For both random variables, the   [[Information_Theory/Differentielle_Entropie|differential  entropy]]  is to be determined in each case.
  
For example, the corresponding equation for the random variable   $X$ is:
+
For example, the corresponding equation for the random variable   $X$  is:
 
:$$h(X) =  
 
:$$h(X) =  
 
\hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}\hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.35cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \big [ f_X(x) \big ] \hspace{0.1cm}{\rm d}x  
 
\hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}\hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.35cm}  f_X(x) \cdot {\rm log} \hspace{0.1cm} \big [ f_X(x) \big ] \hspace{0.1cm}{\rm d}x  
 
\hspace{0.6cm}{\rm mit}\hspace{0.6cm} {\rm supp}(f_X) = \{ x\text{:} \  f_X(x) > 0 \}
 
\hspace{0.6cm}{\rm mit}\hspace{0.6cm} {\rm supp}(f_X) = \{ x\text{:} \  f_X(x) > 0 \}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*If the   ''natural logarithm'', the pseudo-unit   "nat"   must be added.  
+
*If the   "natural logarithm",  the pseudo-unit   "nat"   must be added.  
*If, on the other hand, the result is asked in&nbsp;  "bit"&nbsp; then the <i>dual logarithm</i> &nbsp; &#8658; &nbsp; "$\log_2$"&nbsp; is to be used.
+
*If, on the other hand, the result is asked in&nbsp;  "bit"&nbsp; then the&nbsp;  "dual logarithm" &nbsp; &#8658; &nbsp; "$\log_2$"&nbsp; is to be used.
  
  
In the fourth subtask, the new random variable &nbsp;$Z = A \cdot Y$&nbsp; is considered. Here, the PDF parameter&nbsp; $A$&nbsp; is to be determined in such a way that the differential entropy of the new random variable&nbsp; $Z$&nbsp; yields exactly&nbsp; $1$ bit :<br>
+
In the fourth subtask, the new random variable &nbsp;$Z = A \cdot Y$&nbsp; is considered. Here,&nbsp; the PDF parameter&nbsp; $A$&nbsp; is to be determined in such a way that the differential entropy of the new random variable&nbsp; $Z$&nbsp; yields exactly&nbsp; $1$&nbsp; bit :<br>
:$$h(Z) = h (A \cdot Y) =  h (Y)  + {\rm log}_2 \hspace{0.1cm} (A) = 1\,{\rm bit} \hspace{0.05cm}.$$
+
:$$h(Z) = h (A \cdot Y) =  h (Y)  + {\rm log}_2 \hspace{0.1cm} (A) = 1\ {\rm bit} \hspace{0.05cm}.$$
  
  
Line 34: Line 34:
 
Hints:
 
Hints:
 
*The task belongs to the chapter&nbsp; [[Information_Theory/Differentielle_Entropie|Differential Entropy]].
 
*The task belongs to the chapter&nbsp; [[Information_Theory/Differentielle_Entropie|Differential Entropy]].
*Useful hints for solving this task and further information on continuous-valued random variables can be found in the third chapter "Continuous Random Variables" of the book&nbsp;  [[Theory of Stochastic Signals]].
+
*Useful hints for solving this task and further information on value-continuous random variables can be found in the third chapter "Continuous Random Variables" of the book&nbsp;  [[Theory of Stochastic Signals]].
 
   
 
   
 
*Given the following indefinite integral:
 
*Given the following indefinite integral:

Revision as of 10:36, 25 September 2021

Two triangular PDFs

Two probability density functions  $\rm (PDF)$  with triangular shapes are considered.

  • The random variable  $X$  is limited to the range from  $0$  to  $1$ ,  and it holds for the PDF (upper sketch):
$$f_X(x) = \left\{ \begin{array}{c} 2x \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm} 0 \le x \le 1 \\ {\rm else} \\ \end{array} \hspace{0.05cm}.$$
  • According to the lower sketch, the random variable  $Y$  has the following PDF:
$$f_Y(y) = \left\{ \begin{array}{c} 1 - |\hspace{0.03cm}y\hspace{0.03cm}| \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm} |\hspace{0.03cm}y\hspace{0.03cm}| \le 1 \\ {\rm else} \\ \end{array} \hspace{0.05cm}.$$

For both random variables, the  differential entropy  is to be determined in each case.

For example, the corresponding equation for the random variable  $X$  is:

$$h(X) = \hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}\hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \big [ f_X(x) \big ] \hspace{0.1cm}{\rm d}x \hspace{0.6cm}{\rm mit}\hspace{0.6cm} {\rm supp}(f_X) = \{ x\text{:} \ f_X(x) > 0 \} \hspace{0.05cm}.$$
  • If the  "natural logarithm",  the pseudo-unit  "nat"  must be added.
  • If, on the other hand, the result is asked in  "bit"  then the  "dual logarithm"   ⇒   "$\log_2$"  is to be used.


In the fourth subtask, the new random variable  $Z = A \cdot Y$  is considered. Here,  the PDF parameter  $A$  is to be determined in such a way that the differential entropy of the new random variable  $Z$  yields exactly  $1$  bit :

$$h(Z) = h (A \cdot Y) = h (Y) + {\rm log}_2 \hspace{0.1cm} (A) = 1\ {\rm bit} \hspace{0.05cm}.$$





Hints:

  • The task belongs to the chapter  Differential Entropy.
  • Useful hints for solving this task and further information on value-continuous random variables can be found in the third chapter "Continuous Random Variables" of the book  Theory of Stochastic Signals.
  • Given the following indefinite integral:
$$\int \xi \cdot {\rm ln} \hspace{0.1cm} (\xi)\hspace{0.1cm}{\rm d}\xi = \xi^2 \cdot \big [1/2 \cdot {{\rm ln} \hspace{0.1cm} (\xi)} - {1}/{4}\big ] \hspace{0.05cm}.$$


Questions

1

Calculate the differential entropy of the random variable  $X$  in  "nat".

$h(X) \ = \ $

$\ \rm nat$

2

What result is obtained with the pseudo-unit  "bit"?

$h(X) \ = \ $

$\ \rm bit$

3

Calculate the differential entropy of the random variable  $Y$.

$h(Y) \ = \ $

$\ \rm bit$

4

Determine the PDF parameter  $A$  such that  $\underline{h(Z) = h (A \cdot Y) = 1 \ \rm bit}$ .

$A\ = $


Solution

(1)  For the probability density function, in the range  $0 \le X \le 1$ , it is agreed that:

$$f_X(x) = 2x = C \cdot x \hspace{0.05cm}.$$
  • Here we have replaced "2" by  $C$    ⇒   generalization in order to be able to use the following calculation again in subtask  $(3)$ .
  • Since the differential entropy is sought in "nat", we use the natural logarithm.  With the substitution  $\xi = C \cdot x$  we obtain:
$$h_{\rm nat}(X) = \hspace{0.1cm} - \int_{0}^{1} \hspace{0.1cm} C \cdot x \cdot {\rm ln} \hspace{0.1cm} \big[ C \cdot x \big] \hspace{0.1cm}{\rm d}x = \hspace{0.1cm} - \hspace{0.1cm}\frac{1}{C} \cdot \int_{0}^{C} \hspace{0.1cm} \xi \cdot {\rm ln} \hspace{0.1cm} [ \xi ] \hspace{0.1cm}{\rm d}\xi = - \hspace{0.1cm}\frac{\xi^2}{C} \cdot \left [ \frac{{\rm ln} \hspace{0.1cm} (\xi)}{2} - \frac{1}{4}\right ]_{\xi = 0}^{\xi = C} \hspace{0.05cm}$$
  • Here the indefinite integral given in the front was used.  After inserting the limits, considering  $C=2$, we obtain::
$$h_{\rm nat}(X) = - C/2 \cdot \big [ {\rm ln} \hspace{0.1cm} (C) - 1/2 \big ] = - {\rm ln} \hspace{0.1cm} (2) + 1/2 = - {\rm ln} \hspace{0.1cm} (2) + 1/2 \cdot {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} (\sqrt{\rm e}/2)\hspace{0.05cm} = - 0.193 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} h(X) \hspace{0.15cm}\underline {= - 0.193\,{\rm nat}} \hspace{0.05cm}.$$


(2)  In general:

$$h_{\rm bit}(X) = \frac{h_{\rm nat}(X)}{{\rm ln} \hspace{0.1cm} (2)\,{\rm nat/bit}} = - 0.279 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} h(X) \hspace{0.15cm}\underline {= - 0.279\,{\rm bit}} \hspace{0.05cm}.$$
  • You can save this conversion if you directly replace  $(1)$  direkt "ln" by "log2" already in the analytical result of subtask:
$$h(X) = \ {\rm log}_2 \hspace{0.1cm} (\sqrt{\rm e}/2)\hspace{0.05cm}, \hspace{1.3cm} {\rm pseudo-unit\hspace{-0.1cm}:\hspace{0.15cm} bit} \hspace{0.05cm}.$$


To calculate  $h(Y)$

(3)  We again use the natural logarithm and divide the integral into two partial integrals:

$$h(Y) = \hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp} \hspace{0.03cm}( \hspace{-0.03cm}f_Y)} \hspace{-0.35cm} f_Y(y) \cdot {\rm ln} \hspace{0.1cm} \big[ f_Y(y) \big] \hspace{0.1cm}{\rm d}y = I_{\rm neg} + I_{\rm pos} \hspace{0.05cm}.$$
  • The first integral for the range  $-1 \le y \le 0$  is identical in form to that of subtask  $(1)$  and only shifted with respect to it, which does not affect the result.
  • Now the heighte  $C = 1$  instead of  $C = 2$ has to be considered::
$$I_{\rm neg} =- C/2 \cdot \big [ {\rm ln} \hspace{0.1cm} (C) - 1/2 \big ] = -1/2 \cdot \big [ {\rm ln} \hspace{0.1cm} (1) - 1/2 \cdot {\rm ln} \hspace{0.1cm} ({\rm e}) \big ]= 1/4 \cdot {\rm ln} \hspace{0.1cm} ({\rm e}) \hspace{0.05cm}.$$
  • The second integrand is identical to the first except for a shift and reflection.  Moreover, the integration intervals do not overla   ⇒   $I_{\rm pos} = I_{\rm neg}$:
$$h_{\rm nat}(Y) = 2 \cdot I_{\rm neg} = 1/2 \cdot {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} (\sqrt{\rm e}) \hspace{0.3cm} \Rightarrow\hspace{0.3cm}h_{\rm bit}(Y) = {\rm log}_2 \hspace{0.1cm} (\sqrt{\rm e}) \hspace{0.3cm} \Rightarrow\hspace{0.3cm} h(Y) = {\rm log}_2 \hspace{0.1cm} (1.649)\hspace{0.15cm}\underline {= 0.721\,{\rm bit}}\hspace{0.05cm}.$$


(4)  For the differential entropy of the random variable  $Z = A \cdot Y$  holds in general:

$$h(Z) = h(A \cdot Y) = h(Y) + {\rm log}_2 \hspace{0.1cm} (A) \hspace{0.05cm}.$$
  • Thus, from the requiremen  $h(Z) = 1 \ \rm bit$  and the result of subta  $(3)$  follows:
$${\rm log}_2 \hspace{0.1cm} (A) = 1\,{\rm bit} - 0.721 \,{\rm bit} = 0.279 \,{\rm bit} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} A = 2^{0.279}\hspace{0.15cm}\underline {= 1.213} \hspace{0.05cm}.$$