Difference between revisions of "Aufgaben:Exercise 2.3Z: Asymmetrical Characteristic Operation"

From LNTwww
 
(15 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Nichtlineare Verzerrungen
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Nonlinear_Distortion}}
}}
 
  
[[File:P_ID895__LZI_Z_2_3.png|right|frame|Einfluss nichtlinearer Verzerrungen]]
+
[[File:P_ID895__LZI_Z_2_3.png|right|frame|System and signal examples]]
Am Eingang eines Systems $S$ liegt das Cosinussignal
+
The cosine signal
 
:$$x(t) =  A \cdot \cos(\omega_0 t)$$
 
:$$x(t) =  A \cdot \cos(\omega_0 t)$$
  
an, wobei für die Amplitude stets $A = 0.5$ gelten soll. Das System $S$ besteht
+
is applied to the input of a system  $S$  where  $A = 0.5$  shall always hold for the amplitude.  The system  $S$  consists of
*aus der Addition eines Gleichanteils $C$,  
+
*the addition of a direct (DC) component  $C$,  
*einer Nichtlinearität mit der Kennlinie
+
*a nonlinearity with the characteristic curve
 
:$$g(x) =  \sin(x) \hspace{0.05cm} \approx x -{x^3}\hspace{-0.1cm}/{6} = g_3(x),$$
 
:$$g(x) =  \sin(x) \hspace{0.05cm} \approx x -{x^3}\hspace{-0.1cm}/{6} = g_3(x),$$
*sowie einem idealen Hochpass, der alle Frequenzen bis auf ein Gleichsignal $(f = 0)$ unverfälscht passieren lässt.
+
*as well as an ideal high-pass filter that allows all frequencies to pass unaltered except for a direct (DC) signal  $(f = 0)$.
  
  
Das Ausgangssignal des Gesamtsystems kann allgemein wie folgt dargestellt werden:
+
The output signal of the overall system can generally be depicted as follows:
 
:$$y(t) =  A_0 + A_1 \cdot \cos(\omega_0 t) + A_2 \cdot \cos(2\omega_0 t) +
 
:$$y(t) =  A_0 + A_1 \cdot \cos(\omega_0 t) + A_2 \cdot \cos(2\omega_0 t) +
 
  A_3 \cdot \cos(3\omega_0 t) + \hspace{0.05cm}\text{...}$$
 
  A_3 \cdot \cos(3\omega_0 t) + \hspace{0.05cm}\text{...}$$
  
Die sinusförmige Kennlinie $g(x)$ soll in der gesamten Aufgabe entsprechend der obigen Gleichung durch die kubische Näherung  $g_3(x)$  approximiert werden. Für $C = 0$ ergäbe sich somit die exakt gleiche Konstellation wie in [[Aufgaben:2.3_Sinusförmige_Kennlinie|Aufgabe 2.3]], in deren Unterpunkt '''(2)''' der Klirrfaktor berechnet wurde:  
+
The sinusoidal characteristic curve  $g(x)$  is to be approximated by the cubic approximation $g_3(x)$  throughout the whole problem according to the above equation.  
 +
 
 +
This would result in exactly the same constellation as in  [[Aufgaben:Exercise_2.3:_Sinusoidal_Characteristic|Exercise 2.3]]  for  $C = 0$  in whose subtask  '''(2)'''  the distortion factor was calculated:  
 
*$K = K_{g3} \approx 1.08 \%$  für  $A = 0.5$,
 
*$K = K_{g3} \approx 1.08 \%$  für  $A = 0.5$,
 
*$K = K_{g3} \approx 4.76 \%$  für  $A = 1.0$.
 
*$K = K_{g3} \approx 4.76 \%$  für  $A = 1.0$.
  
  
Unter Berücksichtigung der Konstanten $A = C = 0.5$ gilt für das Eingangssignal der Nichtlinearität:
+
Considering the constants  $A = C = 0.5$  the following holds for the input signal of the nonlinearity:
 
:$$x_{\rm C}(t) =  C + A \cdot \cos(\omega_0 t) = {1}/{2} + {1}/{2}\cdot \cos(\omega_0 t).$$
 
:$$x_{\rm C}(t) =  C + A \cdot \cos(\omega_0 t) = {1}/{2} + {1}/{2}\cdot \cos(\omega_0 t).$$
  
*Die Kennlinie wird also unsymmetrisch betrieben mit Werten zwischen $0$ und $1$.  
+
*So,  the characteristic curve is operated asymmetrically with values between  $0$  and  $1$.  
*In obiger Grafik sind zusätzlich die Signale $x_{\rm C}(t)$ und $y_{\rm C}(t)$ direkt vor und nach der Kennlinie $g(x)$ eingezeichnet.
+
*In the above graph,  the signals  $x_{\rm C}(t)$  and  $y_{\rm C}(t)$  are plotted additionally directly before and after the characteristic curve  $g(x)$ .
 +
 
 +
 
 +
 
  
  
Line 34: Line 38:
  
  
''Hinweise:''  
+
''Please note:''  
*Die Aufgabe bezieht sich auf das Kapitel  [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]].
+
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion|Nonlinear Distortions]].
 
   
 
   
*Als bekannt vorausgesetzt werden die folgenden trigonometrischen Beziehungen:
+
*The following trigonometric relations are assumed to be known:
 
:$$\cos^2(\alpha) =  {1}/{2}  + {1}/{2}
 
:$$\cos^2(\alpha) =  {1}/{2}  + {1}/{2}
 
\cdot \cos(2\alpha)\hspace{0.05cm}, \hspace{0.3cm}
 
\cdot \cos(2\alpha)\hspace{0.05cm}, \hspace{0.3cm}
Line 44: Line 48:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das Ausgangssignal $y(t)$ unter Berücksichtigung des Hochpasses. Wie lautet der Gleichsignalanteil $A_0$?
+
{Compute the output signal&nbsp; $y(t)$&nbsp; considering the high-pass filter.&nbsp; What is the direct (DC) signal component&nbsp; $A_0$?
 
|type="{}"}
 
|type="{}"}
 
$A_0 \ = \ $ { 0. }
 
$A_0 \ = \ $ { 0. }
  
  
{Geben Sie die weiteren Fourierkoeffizienten des Signals $y(t)$ an.
+
{State the other Fourier coefficients of the signal&nbsp; $y(t)$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$A_1  \ = \ $  { 0.422 3% }
 
$A_1  \ = \ $  { 0.422 3% }
Line 60: Line 64:
  
  
{Berechnen Sie den Klirrfaktor des Gesamtsystems.
+
{Compute the distortion factor of the overall system.
 
|type="{}"}
 
|type="{}"}
 
$K  \ = \ $  { 7.51 3% } $\ \%$
 
$K  \ = \ $  { 7.51 3% } $\ \%$
  
  
{Berechnen Sie den Maximal&ndash; und den Minimalwert des Signals $y(t)$.
+
{Compute the maximum and the minimum value of the signal&nbsp; $y(t)$.
 
|type="{}"}
 
|type="{}"}
 
$y_\text{max}  \ = \ $  { 0.386 3% }
 
$y_\text{max}  \ = \ $  { 0.386 3% }
Line 74: Line 78:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Unter Berücksichtigung der kubischen Näherung &nbsp;$g_3(x)$&nbsp; erhält man vor dem Hochpass:
+
'''(1)'''&nbsp; Considering the cubic approximation&nbsp;$g_3(x)$&nbsp; the following is obtained before the high-pass filter:
 
:$$y_{\rm C}(t) = g_3\big[x_{\rm C}(t)\big] = \big[ C + A \cdot \cos(\omega_0
 
:$$y_{\rm C}(t) = g_3\big[x_{\rm C}(t)\big] = \big[ C + A \cdot \cos(\omega_0
 
  t)\big] - {1}/{6} \cdot \big[ C + A \cdot \cos(\omega_0
 
  t)\big] - {1}/{6} \cdot \big[ C + A \cdot \cos(\omega_0
Line 86: Line 90:
 
  t) + A^3 \cdot \cos^3(\omega_0  t)\big].$$
 
  t) + A^3 \cdot \cos^3(\omega_0  t)\big].$$
  
Das Signal $y_{\rm C}(t)$ beinhaltet eine Gleichkomponente $C - C^3/6$, die aufgrund des Hochpasses im Signal $y(t)$ nicht mehr enthalten ist:  
+
*The signal&nbsp; $y_{\rm C}(t)$&nbsp; contains a direct (DC) component&nbsp; $C - C^3/6$&nbsp; which is no longer included in the signal&nbsp; $y(t)$&nbsp; due to the high-pass filter:  
 
:$$\underline{ A_0 = 0}.$$
 
:$$\underline{ A_0 = 0}.$$
  
  
'''(2)'''&nbsp; Bei Anwendung der angegebenen trigonometrischen Beziehungen erhält man folgende Koeffizienten mit $A= C = 0.5$:
+
'''(2)'''&nbsp; Applying the given trigonometric relations the following coefficients with&nbsp; $A= C = 0.5$&nbsp; are obtained:
 
:$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A  - {1}/{6} \cdot {3}/{4}\cdot
 
:$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A  - {1}/{6} \cdot {3}/{4}\cdot
 
  A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64}
 
  A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64}
Line 99: Line 103:
 
   A^3 = - {1}/{192}  \hspace{0.15cm}\underline{\approx -0.005}.$$
 
   A^3 = - {1}/{192}  \hspace{0.15cm}\underline{\approx -0.005}.$$
  
Terme höherer Ordnung kommen nicht vor. Somit ist auch $\underline{A_4  = 0}$.
+
*Higher order terms do not occur.&nbsp; Thus, &nbsp; $\underline{A_4  = 0}$&nbsp; holds.
  
  
'''(3)'''&nbsp; Die Klirrfaktoren zweiter und dritter Ordnung ergeben sich bei dieser Aufgabe zu $K_2  = 2/27 \approx 7.41\%$ und $K_3  = 1/81 \approx 1.23\%$. Damit erhält man für den Gesamtklirrfaktor
+
 
 +
'''(3)'''&nbsp; In this task,&nbsp; the higher order distortion factors are&nbsp; $K_2  = 2/27 \approx 7.41\%$&nbsp; and&nbsp; $K_3  = 1/81 \approx 1.23\%$.  
 +
*Thereby, the following is obtained for the overall distortion factor:
 
:$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$
 
:$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$
  
  
'''(4)'''&nbsp; Der Maximalwert tritt zum Zeitpunkt $t = 0$ und bei Vielfachen von $T$ auf:
+
 
 +
'''(4)'''&nbsp; The maximum value occurs at time&nbsp; $t = 0$&nbsp; and at multiples of&nbsp; $T$&nbsp;:
 
:$$y_{\rm max}= y(t=0) = A_1 + A_2 + A_3 = 0.422 -0.031 -0.005 \hspace{0.15cm}\underline{=
 
:$$y_{\rm max}= y(t=0) = A_1 + A_2 + A_3 = 0.422 -0.031 -0.005 \hspace{0.15cm}\underline{=
 
  0.386}.$$
 
  0.386}.$$
  
Die Minimalwerte liegen genau in der Mitte zwischen zwei Maxima und es gilt:
+
*The minimum values are located exactly in the middle between two maxima and it holds that:
 
:$$y_{\rm min}= - A_1 + A_2 - A_3 = -0.422 -0.031 +0.005\hspace{0.15cm}\underline{ =
 
:$$y_{\rm min}= - A_1 + A_2 - A_3 = -0.422 -0.031 +0.005\hspace{0.15cm}\underline{ =
 
  -0.448}.$$
 
  -0.448}.$$
  
*Das Signal $y(t)$ ist gegenüber dem in der Skizze auf der Angabenseite eingezeichnetem Signal um $0.448$ nach unten verschoben.  
+
*The signal&nbsp; $y(t)$&nbsp; is shifted downward by&nbsp; $0.448$&nbsp; compared to the signal&nbsp; drawn in the sketch on the information page.  
*Dieser Signalwert ergibt sich aus folgender Gleichung mit $A = C = 1/2$:
+
*This signal value is obtained from the following equation considering&nbsp; $A = C = 1/2$:
 
:$$C - \frac{C \cdot A^2}{4}- \frac{C^3}{6} =  {1}/{2} - {1}/{32}-  {1}/{48}  = 0.448.$$
 
:$$C - \frac{C \cdot A^2}{4}- \frac{C^3}{6} =  {1}/{2} - {1}/{32}-  {1}/{48}  = 0.448.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 121: Line 128:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^2.2 Nichtlineare Verzerrungen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nonlinear Distortions^]]

Latest revision as of 14:50, 29 September 2021

System and signal examples

The cosine signal

$$x(t) = A \cdot \cos(\omega_0 t)$$

is applied to the input of a system  $S$  where  $A = 0.5$  shall always hold for the amplitude.  The system  $S$  consists of

  • the addition of a direct (DC) component  $C$,
  • a nonlinearity with the characteristic curve
$$g(x) = \sin(x) \hspace{0.05cm} \approx x -{x^3}\hspace{-0.1cm}/{6} = g_3(x),$$
  • as well as an ideal high-pass filter that allows all frequencies to pass unaltered except for a direct (DC) signal  $(f = 0)$.


The output signal of the overall system can generally be depicted as follows:

$$y(t) = A_0 + A_1 \cdot \cos(\omega_0 t) + A_2 \cdot \cos(2\omega_0 t) + A_3 \cdot \cos(3\omega_0 t) + \hspace{0.05cm}\text{...}$$

The sinusoidal characteristic curve  $g(x)$  is to be approximated by the cubic approximation $g_3(x)$  throughout the whole problem according to the above equation.

This would result in exactly the same constellation as in  Exercise 2.3  for  $C = 0$  in whose subtask  (2)  the distortion factor was calculated:

  • $K = K_{g3} \approx 1.08 \%$  für  $A = 0.5$,
  • $K = K_{g3} \approx 4.76 \%$  für  $A = 1.0$.


Considering the constants  $A = C = 0.5$  the following holds for the input signal of the nonlinearity:

$$x_{\rm C}(t) = C + A \cdot \cos(\omega_0 t) = {1}/{2} + {1}/{2}\cdot \cos(\omega_0 t).$$
  • So,  the characteristic curve is operated asymmetrically with values between  $0$  and  $1$.
  • In the above graph,  the signals  $x_{\rm C}(t)$  and  $y_{\rm C}(t)$  are plotted additionally directly before and after the characteristic curve  $g(x)$ .





Please note:

  • The following trigonometric relations are assumed to be known:
$$\cos^2(\alpha) = {1}/{2} + {1}/{2} \cdot \cos(2\alpha)\hspace{0.05cm}, \hspace{0.3cm} \cos^3(\alpha) = {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha) \hspace{0.05cm}.$$


Questions

1

Compute the output signal  $y(t)$  considering the high-pass filter.  What is the direct (DC) signal component  $A_0$?

$A_0 \ = \ $

2

State the other Fourier coefficients of the signal  $y(t)$ .

$A_1 \ = \ $

$A_2 \ = \ $

$A_3 \ = \ $

$A_4 \ = \ $

3

Compute the distortion factor of the overall system.

$K \ = \ $

$\ \%$

4

Compute the maximum and the minimum value of the signal  $y(t)$.

$y_\text{max} \ = \ $

$y_\text{min} \ = \ $


Solution

(1)  Considering the cubic approximation $g_3(x)$  the following is obtained before the high-pass filter:

$$y_{\rm C}(t) = g_3\big[x_{\rm C}(t)\big] = \big[ C + A \cdot \cos(\omega_0 t)\big] - {1}/{6} \cdot \big[ C + A \cdot \cos(\omega_0 t)\big]^3 $$
$$\Rightarrow \; y_{\rm C}(t) = C + A \cdot \cos(\omega_0 t) - {1}/{6} \cdot \big[ C^3 + 3 \cdot C^2 \cdot A \cdot \cos(\omega_0 t) + \hspace{0.09cm}3 \cdot C \cdot A^2 \cdot \cos^2(\omega_0 t) + A^3 \cdot \cos^3(\omega_0 t)\big].$$
  • The signal  $y_{\rm C}(t)$  contains a direct (DC) component  $C - C^3/6$  which is no longer included in the signal  $y(t)$  due to the high-pass filter:
$$\underline{ A_0 = 0}.$$


(2)  Applying the given trigonometric relations the following coefficients with  $A= C = 0.5$  are obtained:

$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A - {1}/{6} \cdot {3}/{4}\cdot A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64} \hspace{0.15cm}\underline{ \approx 0.422},$$
$$A_2 = - {1}/{6}\cdot 3 \cdot {1}/{2}\cdot C \cdot A^2 = - \frac{1}{32} \hspace{0.15cm}\underline{\approx -0.031},$$
$$A_3 = - {1}/{6}\cdot \frac{1}{4}\cdot A^3 = - {1}/{192} \hspace{0.15cm}\underline{\approx -0.005}.$$
  • Higher order terms do not occur.  Thus,   $\underline{A_4 = 0}$  holds.


(3)  In this task,  the higher order distortion factors are  $K_2 = 2/27 \approx 7.41\%$  and  $K_3 = 1/81 \approx 1.23\%$.

  • Thereby, the following is obtained for the overall distortion factor:
$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$


(4)  The maximum value occurs at time  $t = 0$  and at multiples of  $T$ :

$$y_{\rm max}= y(t=0) = A_1 + A_2 + A_3 = 0.422 -0.031 -0.005 \hspace{0.15cm}\underline{= 0.386}.$$
  • The minimum values are located exactly in the middle between two maxima and it holds that:
$$y_{\rm min}= - A_1 + A_2 - A_3 = -0.422 -0.031 +0.005\hspace{0.15cm}\underline{ = -0.448}.$$
  • The signal  $y(t)$  is shifted downward by  $0.448$  compared to the signal  drawn in the sketch on the information page.
  • This signal value is obtained from the following equation considering  $A = C = 1/2$:
$$C - \frac{C \cdot A^2}{4}- \frac{C^3}{6} = {1}/{2} - {1}/{32}- {1}/{48} = 0.448.$$