Difference between revisions of "Exercise 2.4Z: Characteristics Measurement"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Nichtlineare Verzerrungen }} right| :Von einem nichtlinearen System i…“)
 
 
(22 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Nichtlineare Verzerrungen
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Nonlinear_Distortion
 
}}
 
}}
  
[[File:P_ID898__LZI_Z_2_4.png|right|]]
+
[[File:P_ID898__LZI_Z_2_4.png|right|frame|Given characteristic  $y = g(x)$]]
:Von einem nichtlinearen System ist bekannt, dass die Kennlinie durch folgende Gleichung dargestellt werden kann:
+
It is known that the characteristic curve can be represented as follows for a nonlinear system:
 
:$$y(t) =  c_1  \cdot x(t) + c_2  \cdot x^2(t).$$
 
:$$y(t) =  c_1  \cdot x(t) + c_2  \cdot x^2(t).$$
  
:Da die Verzerrungen nichtlinear sind, ist kein Frequenzgang <i>H</i>(<i>f</i>) angebbar.
+
Since the distortions are nonlinear no frequency response&nbsp; $H(f)$&nbsp; can be given.
  
:Zur Bestimmung des dimensionslosen Koeffizienten <i>c</i><sub>1</sub> sowie des quadratischen Koeffizienten <i>c</i><sub>2</sub> werden nun verschiedene Rechteckimpulse <i>x</i>(<i>t</i>) &ndash; gekennzeichnet durch ihre Amplituden <i>A<sub>x</sub></i> und Breiten <i>T<sub>x</sub></i>  &ndash; an den Eingang gelegt und jeweils die Impulsamplitude <i>A<sub>y</sub></i> am Ausgang gemessen. Nach drei Versuchen ergeben sich folgende Werte:
+
To determine the dimensionless coefficient&nbsp; $c_1$&nbsp; as well as the quadratic coefficient&nbsp; $c_2$&nbsp; different rectangular pulses&nbsp; $x(t)$&nbsp; &ndash; characterized by the amplitude&nbsp; $A_x$&nbsp; and the width&nbsp; $T_x$&nbsp; &ndash; are now applied to the input and the pulse amplitude&nbsp; $A_y$&nbsp; at the output is measured in each case.  
  
:* <i>A<sub>x</sub></i> = 1 V, <i>T<sub>x</sub></i> = 8 ms:&nbsp;&nbsp; <i>A<sub>y</sub></i> = 0.55 V,
+
The first three trials generate the following values:
 +
* $A_x = 1 \ {\rm V}, \; \; T_x = 8 \ {\rm ms}$ :&nbsp;&nbsp;&nbsp;&nbsp; $A_y = 0.55 \ {\rm V}$,
 +
* $A_x = 2 \ {\rm V}, \; \; T_x = 4 \ {\rm ms}$ :&nbsp;&nbsp;&nbsp;&nbsp; $A_y = 1.20 \ {\rm V}$,
 +
* $A_x = 3 \ {\rm V}, \; \; T_x = 2 \ {\rm ms}$ :&nbsp;&nbsp;&nbsp;&nbsp; $A_y = 1.95 \ {\rm V}$.
  
:* <i>A<sub>x</sub></i> = 2 V, <i>T<sub>x</sub></i> = 4 ms:&nbsp;&nbsp; <i>A<sub>y</sub></i> = 1.20 V,
 
  
:* <i>A<sub>x</sub></i> = 3 V, <i>T<sub>x</sub></i> = 2 ms:&nbsp;&nbsp; <i>A<sub>y</sub></i> = 1.95 V.
+
For the subtasks&nbsp; '''(3)'''&nbsp; and&nbsp; '''(4)'''&nbsp; let the input signal&nbsp; $x(t)$&nbsp; be a harmonic oscillation because only for such an oscillation a distortion factor can be specified.  
  
:Bei den Teilaufgaben 3) und 4) sei das Eingangssignal <i>x</i>(<i>t</i>) eine harmonische Schwingung, da nur für eine solche ein Klirrfaktor angebbar ist. Dagegen wird für die Teilaufgabe e) ein Dreieckimpuls
+
In contrast, a triangular pulse with amplitude&nbsp; $A_x = 3 \ {\rm V}$&nbsp; and the one-sided pulse duration&nbsp; $T_x = 2 \ {\rm ms}$&nbsp; is considered for the subtask&nbsp; '''(5)'''&nbsp;:
:$$x(t) =  A_x \cdot \left[ 1 -\frac{|t|}{T_x}\right] $$
+
:$$x(t) =  A_x \cdot ( 1 - {|t|}/{T_x}) $$
  
:mit der Amplitude <i>A<sub>x</sub></i> = 3 V und der einseitigen Impulsdauer <i>T<sub>x</sub></i> = 2 ms betrachtet. Im Fragenkatalog werden folgende Abkürzungen benutzt:
+
 
 +
 
 +
 
 +
 
 +
''Please note:''
 +
*The exercise belongs to the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion|Nonlinear Distortions]].
 +
 +
*The following abbreviations are used in the formulation of the questions:
 
:$$y_1(t) =  c_1  \cdot x(t), \hspace{0.5cm} y_2(t) = c_2  \cdot
 
:$$y_1(t) =  c_1  \cdot x(t), \hspace{0.5cm} y_2(t) = c_2  \cdot
 
x^2(t).$$
 
x^2(t).$$
  
:<b>Hinweis:</b> Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 2.2.
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen treffen für den Ausgangsimpuls <i>y</i>(<i>t</i>) zu, wenn am Eingang ein Rechteckimpuls <i>x</i>(<i>t</i>) mit Amplitude <i>A<sub>x</sub></i> und Dauer <i>T<sub>x</sub></i> anliegt?
+
{A rectangular pulse&nbsp; $x(t)$&nbsp; with amplitude&nbsp; $A_x$&nbsp; and duration&nbsp; $T_x$&nbsp; is applied to the input.&nbsp; <br>Which statements hold for the output pulse&nbsp; $y(t)$?
 
|type="[]"}
 
|type="[]"}
- Der Ausgangsimpuls <i>y</i>(<i>t</i>) ist dreieckförmig.
+
- The output pulse&nbsp; $y(t)$&nbsp; is triangular in shape.
- Die Amplituden am Eingang und Ausgang sind gleich (<i>A<sub>y</sub></i> = <i>A<sub>x</sub></i>).
+
- The amplitudes at the input and output are the same&nbsp; &rArr; &nbsp; $A_y = A_x$.
+ Die Impulsdauer wird durch das System nicht verändert (<i>T<sub>y</sub></i> = <i>T<sub>x</sub></i>).
+
+ The pulse duration is not changed by the system&nbsp; &rArr; &nbsp; $T_y = T_x$.
  
  
{Berechnen Sie die beiden Koeffizienten der Taylorreihe.
+
{Compute the first two coefficients of the Taylor series.
 
|type="{}"}
 
|type="{}"}
$c_1$ = { 0.5 3% }
+
$c_1 \ = \ $ { 0.5 3% }
$c_2$ = { 0.05 3% } $1/v$
+
$c_2 \ = \ $ { 0.05 3% } $\ \rm 1/V$
  
  
{Welcher Klirrfaktor wird mit dem Testsignal <i>x</i>(<i>t</i>) = 1 V &middot; cos(<i>&omega;</i><sub>0</sub><i>t</i>) gemessen?
+
{Which distortion factor&nbsp; $K$&nbsp; is measured with the test signal&nbsp; $x(t) = 1 \hspace{0.08cm} {\rm V} \cdot \cos(\omega_0 \cdot t)$&nbsp;?&nbsp; That is: &nbsp; $\underline{A_x = 1\hspace{0.08cm} \rm  V}$.
 
|type="{}"}
 
|type="{}"}
$A_x = 1 V:\ \ K$ = { 5 3% } %
+
$K \ = \ $ { 5 3% } $\ \%$
  
  
{Welcher Klirrfaktor wird mit <i>x</i>(<i>t</i>) = 3 V &middot; cos(<i>&omega;</i><sub>0</sub><i>t</i>) gemessen?
+
{Which distortion factor&nbsp; $K$&nbsp; is measured with the test signal&nbsp; $x(t) = 3 \hspace{0.08cm} {\rm V} \cdot \cos(\omega_0 \cdot t)$&nbsp;?&nbsp; That is: &nbsp; $\underline{A_x = 3\hspace{0.08cm} \rm  V}$.
 
|type="{}"}
 
|type="{}"}
$A_x = 3 V:\ \ K$ = { 15 3% } %
+
$K \ = \ $ { 15 3% } $\ \%$
  
  
{Welcher Ausgangsimpuls <i>y</i>(<i>t</i>) ergibt sich bei dreieckförmigem Eingangsimpuls? Wie lauten die Signalwerte bei <i>t</i> = 0 und <i>t</i> = <i>T<sub>x</sub></i>/2?
+
{Which output pulse&nbsp; $y(t)$&nbsp; arises as a result when the input pulse is triangular?&nbsp; What are the signal values at&nbsp; $ t = 0$&nbsp; and&nbsp; $ t = T_x/2$?
 
|type="{}"}
 
|type="{}"}
$y(t = 0)$ = { 1.95 3% } $V$
+
$y(t = 0) \ = \ $ { 1.95 3% } $\ \rm V$
$y(t = T_x/2)$ = { 0.8625 3% } $V$
+
$y(t = T_x/2) \ = \ $ { 0.8625 3% } $\ \rm V$
  
  
Line 62: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Ist der Eingangsimpuls <i>x</i>(<i>t</i>) rechteckförmig, so ist auch <i>x</i><sup>2</sup>(<i>t</i>) ein Rechteck mit Höhe <i>A<sub>x</sub></i><sup>2</sup> im Bereich von 0 bis <i>T<sub>x</sub></i> und außerhalb 0. Auch das gesamte Ausgangssignal <i>y</i>(<i>t</i>) ist somit rechteckförmig mit der Amplitude
+
'''(1)'''&nbsp; <u>Proposed solution 3</u> is the only correct one:
 +
*If the input pulse&nbsp;$x(t)$&nbsp; is rectangular, then&nbsp;$x^2(t)$&nbsp; is also a rectangle with height&nbsp;$A_x^2$&nbsp; between&nbsp; $0$&nbsp; and&nbsp; $T_x$,&nbsp; outside zero.  
 +
*The overall output signal&nbsp;$y(t)$&nbsp; is thus also rectangular with the amplitude
 
:$$A_y= c_1 \cdot A_x + c_2 \cdot A_x^2 .$$
 
:$$A_y= c_1 \cdot A_x + c_2 \cdot A_x^2 .$$
 +
*The following holds for the pulse duration: &nbsp; $T_y  = T_x$.
 +
  
:Für die Impulsdauer gilt <i>T<sub>y</sub></i> = <i>T<sub>x</sub></i>. Richtig ist also <u>nur der letzte Lösungsvorschlag</u>.
 
  
:<b>2.</b>&nbsp;&nbsp;Mit den beiden ersten Parametersätzen kann folgendes lineares Gleichungssystem angegeben werden:
+
'''(2)'''&nbsp; The following system of linear equations can be specified with the first two sets of parameters:
 
:$$c_1  \cdot 1\,{\rm V} + c_2 \cdot (1\,{\rm V})^2  = 0.55\,{\rm
 
:$$c_1  \cdot 1\,{\rm V} + c_2 \cdot (1\,{\rm V})^2  = 0.55\,{\rm
  V},\\
+
  V},$$
c_1  \cdot  2\,{\rm V} + c_2 \cdot (2\,{\rm V})^2  = 1.20\,{\rm
+
:$$c_1  \cdot  2\,{\rm V} + c_2 \cdot (2\,{\rm V})^2  = 1.20\,{\rm
 
  V}.\hspace{0.05cm}$$
 
  V}.\hspace{0.05cm}$$
  
:Durch Multiplikation der ersten Gleichung mit &ndash;2 und Addition der beiden Gleichungen erhält man:
+
*The following is obtained by multiplying the first equation by&nbsp; $-2$&nbsp; and adding the two equations:
 
:$$c_2 \cdot 2\,{\rm V}^2  = 0.1\,{\rm
 
:$$c_2 \cdot 2\,{\rm V}^2  = 0.1\,{\rm
  V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_2  \hspace{0.15cm}\underline{= 0.05\,{1/\rm
+
  V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_2  \hspace{0.15cm}\underline{= 0.05\cdot{1/\rm
 
  V}}.$$
 
  V}}.$$
 +
*The linear coefficient is thus&nbsp; $c_1  \hspace{0.15cm}\underline{= 0.5}.$
  
:Der Linearkoeffizient ist somit <i>c</i><sub>1</sub> <u>= 0.5</u>. Der dritte Parametersatz kann genutzt werden, um das Ergebnis zu kontrollieren:
+
*The third set of parameters can be used to verify the result:
 
:$$c_1  \cdot 3\,{\rm V} + c_2 \cdot (3\,{\rm V})^2  = 0.5 \cdot 3\,{\rm
 
:$$c_1  \cdot 3\,{\rm V} + c_2 \cdot (3\,{\rm V})^2  = 0.5 \cdot 3\,{\rm
  V}+ 0.05 \frac{1}{\rm V}\cdot 9\,{\rm V}^2  = 1.95\,{\rm
+
  V}+ 0.05 \ {1}/{\rm V}\cdot 9\,{\rm V}^2  = 1.95\,{\rm
 
  V}.$$
 
  V}.$$
  
:<b>3.</b>&nbsp;&nbsp;Die Angabe eines Klirrfaktors bedingt die Verwendung einer harmonischen Schwingung am Eingang. Ist <i>X</i><sub>+</sub>(<i>f</i>) = 1V &middot; <i>&delta;</i>(<i>f</i> &ndash; <i>f</i><sub>0</sub>), so lautet das Spektrum des analytischen Signals am Ausgang:
 
:$$ Y_{+}(f)=\frac{c_2}{2}\cdot A_x^2 \cdot \delta(f) + c_1\cdot A_x \cdot \delta(f- f_0)+\frac{c_2}{2}\cdot A_x^2 \cdot \delta(f- 2 f_0). $$
 
  
:Die Diracfunktion bei <i>f</i> = 0 folgt aus der trigonometrischen Umformung cos<sup>2</sup>(<i>&alpha;</i>) = 1/2 + 1/2 &middot; cos(<i>&alpha;</i>). Mit <i>A</i><sub>1</sub> = <i>c</i><sub>1</sub> &middot; <i>A<sub>x</sub></i> = 0.5 V und <i>A</i><sub>2</sub> = (<i>c</i><sub>2</sub>/2) &middot; <i>A<sub>x</sub></i><sup>2</sup> = 0.025 V ergibt sich somit für den Klirrfaktor:
+
'''(3)'''&nbsp; The specification of a distortion factor requires the use of a harmonic oscillation at the input.
 +
 
 +
*If&nbsp; $X_+(f) = 1 \ {\rm V} \cdot \delta (f - f_0)$&nbsp; holds,&nbsp; then the spectrum of the analytic signal at the output is:
 +
:$$ Y_{+}(f)={c_2}/{2}\cdot A_x^2 \cdot \delta(f) + c_1\cdot A_x \cdot \delta(f- f_0)+ {c_2}/{2}\cdot A_x^2 \cdot \delta(f- 2 f_0). $$
 +
 
 +
*The Dirac function at&nbsp; $f = 0$&nbsp; follows from the trigonometric transformation&nbsp; $\cos^2(\alpha) = 1/2 + 1/2 \cdot \cos(\alpha).$
 +
 +
*With&nbsp; $A_1 = c_1 \cdot A_x = 0.5 \ {\rm V} $&nbsp; and&nbsp;  $A_2 = (c_2/2) \cdot A_x^2 = 0.025 \ {\rm V}^2 $&nbsp; the following is thus obtained for the distortion factor:
 
:$$K= \frac{A_2}{A_1}= \frac{c_2/2 \cdot A_x}{c_1 }= \frac{0.025}{0.5}  \hspace{0.15cm}\underline{= 5 \%}.$$
 
:$$K= \frac{A_2}{A_1}= \frac{c_2/2 \cdot A_x}{c_1 }= \frac{0.025}{0.5}  \hspace{0.15cm}\underline{= 5 \%}.$$
  
:<b>4.</b>&nbsp;&nbsp;Entsprechend der Musterlösung zu c) ist <i>K</i> proportional zu <i>A<sub>x</sub></i>. Deshalb erhält man nun <u><i>K</i> = 15%</u>.
 
  
:<b>5.</b>&nbsp;&nbsp;Nun lautet das Ausgangssignal:
+
'''(4)'''&nbsp; According to the solution of the last subtask&nbsp; $K$&nbsp; is proportional to&nbsp; $A_x$. Therefore, one now obtains&nbsp; $K \hspace{0.15cm}\underline{= 15 \%}.$
:$$y(t)=  c_1\cdot A_x \cdot \left( 1 - \frac{|\hspace{0.05cm}t\hspace{0.05cm}|}{T_x}\right) +\hspace{0.1cm}
+
 
  {c_2}\cdot A_x^2 \cdot \left( 1 - \frac{|\hspace{0.05cm}t\hspace{0.05cm}|}{T_x}\right)^2.$$
+
 
 +
 
 +
'''(5)'''&nbsp; Now the output signal is:
 +
:$$y(t)=  c_1\cdot A_x \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right) +\hspace{0.1cm}
 +
  {c_2}\cdot A_x^2 \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right)^2.$$
  
:Zum Zeitpunkt <i>t</i> = 0 bzw. <i>t</i> = <i>T<sub>x</sub></i>/2 treten folgende Werte auf:
+
*The following values occur at times&nbsp;$t = 0$&nbsp; and &nbsp;$t = T_x/2$:
 
:$$y(t=0) = c_1\cdot A_x  + {c_2}\cdot A_x^2  \hspace{0.15cm}\underline{= 1.95\,{\rm
 
:$$y(t=0) = c_1\cdot A_x  + {c_2}\cdot A_x^2  \hspace{0.15cm}\underline{= 1.95\,{\rm
  V}}\\
+
  V}},$$
y(t=T_x/2) =  c_1\cdot A_x \cdot \frac{1}{2} + \hspace{0.1cm}{c_2}\cdot A_x^2 \cdot \frac{1}{4}= 0.75\,{\rm
+
:$$y(t=T_x/2) =  c_1\cdot A_x \cdot {1}/{2} + \hspace{0.1cm}{c_2}\cdot A_x^2 \cdot {1}/{4}= 0.75\,{\rm
 
  V}+ 0.1125\,{\rm  V} \hspace{0.15cm}\underline{ = 0.8625\,{\rm
 
  V}+ 0.1125\,{\rm  V} \hspace{0.15cm}\underline{ = 0.8625\,{\rm
 
  V}}.$$
 
  V}}.$$
Line 107: Line 127:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^2.2 Nichtlineare Verzerrungen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nonlinear Distortions^]]

Latest revision as of 14:29, 1 October 2021

Given characteristic  $y = g(x)$

It is known that the characteristic curve can be represented as follows for a nonlinear system:

$$y(t) = c_1 \cdot x(t) + c_2 \cdot x^2(t).$$

Since the distortions are nonlinear no frequency response  $H(f)$  can be given.

To determine the dimensionless coefficient  $c_1$  as well as the quadratic coefficient  $c_2$  different rectangular pulses  $x(t)$  – characterized by the amplitude  $A_x$  and the width  $T_x$  – are now applied to the input and the pulse amplitude  $A_y$  at the output is measured in each case.

The first three trials generate the following values:

  • $A_x = 1 \ {\rm V}, \; \; T_x = 8 \ {\rm ms}$ :     $A_y = 0.55 \ {\rm V}$,
  • $A_x = 2 \ {\rm V}, \; \; T_x = 4 \ {\rm ms}$ :     $A_y = 1.20 \ {\rm V}$,
  • $A_x = 3 \ {\rm V}, \; \; T_x = 2 \ {\rm ms}$ :     $A_y = 1.95 \ {\rm V}$.


For the subtasks  (3)  and  (4)  let the input signal  $x(t)$  be a harmonic oscillation because only for such an oscillation a distortion factor can be specified.

In contrast, a triangular pulse with amplitude  $A_x = 3 \ {\rm V}$  and the one-sided pulse duration  $T_x = 2 \ {\rm ms}$  is considered for the subtask  (5) :

$$x(t) = A_x \cdot ( 1 - {|t|}/{T_x}) $$



Please note:

  • The following abbreviations are used in the formulation of the questions:
$$y_1(t) = c_1 \cdot x(t), \hspace{0.5cm} y_2(t) = c_2 \cdot x^2(t).$$


Questions

1

A rectangular pulse  $x(t)$  with amplitude  $A_x$  and duration  $T_x$  is applied to the input. 
Which statements hold for the output pulse  $y(t)$?

The output pulse  $y(t)$  is triangular in shape.
The amplitudes at the input and output are the same  ⇒   $A_y = A_x$.
The pulse duration is not changed by the system  ⇒   $T_y = T_x$.

2

Compute the first two coefficients of the Taylor series.

$c_1 \ = \ $

$c_2 \ = \ $

$\ \rm 1/V$

3

Which distortion factor  $K$  is measured with the test signal  $x(t) = 1 \hspace{0.08cm} {\rm V} \cdot \cos(\omega_0 \cdot t)$ ?  That is:   $\underline{A_x = 1\hspace{0.08cm} \rm V}$.

$K \ = \ $

$\ \%$

4

Which distortion factor  $K$  is measured with the test signal  $x(t) = 3 \hspace{0.08cm} {\rm V} \cdot \cos(\omega_0 \cdot t)$ ?  That is:   $\underline{A_x = 3\hspace{0.08cm} \rm V}$.

$K \ = \ $

$\ \%$

5

Which output pulse  $y(t)$  arises as a result when the input pulse is triangular?  What are the signal values at  $ t = 0$  and  $ t = T_x/2$?

$y(t = 0) \ = \ $

$\ \rm V$
$y(t = T_x/2) \ = \ $

$\ \rm V$


Solution

(1)  Proposed solution 3 is the only correct one:

  • If the input pulse $x(t)$  is rectangular, then $x^2(t)$  is also a rectangle with height $A_x^2$  between  $0$  and  $T_x$,  outside zero.
  • The overall output signal $y(t)$  is thus also rectangular with the amplitude
$$A_y= c_1 \cdot A_x + c_2 \cdot A_x^2 .$$
  • The following holds for the pulse duration:   $T_y = T_x$.


(2)  The following system of linear equations can be specified with the first two sets of parameters:

$$c_1 \cdot 1\,{\rm V} + c_2 \cdot (1\,{\rm V})^2 = 0.55\,{\rm V},$$
$$c_1 \cdot 2\,{\rm V} + c_2 \cdot (2\,{\rm V})^2 = 1.20\,{\rm V}.\hspace{0.05cm}$$
  • The following is obtained by multiplying the first equation by  $-2$  and adding the two equations:
$$c_2 \cdot 2\,{\rm V}^2 = 0.1\,{\rm V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_2 \hspace{0.15cm}\underline{= 0.05\cdot{1/\rm V}}.$$
  • The linear coefficient is thus  $c_1 \hspace{0.15cm}\underline{= 0.5}.$
  • The third set of parameters can be used to verify the result:
$$c_1 \cdot 3\,{\rm V} + c_2 \cdot (3\,{\rm V})^2 = 0.5 \cdot 3\,{\rm V}+ 0.05 \ {1}/{\rm V}\cdot 9\,{\rm V}^2 = 1.95\,{\rm V}.$$


(3)  The specification of a distortion factor requires the use of a harmonic oscillation at the input.

  • If  $X_+(f) = 1 \ {\rm V} \cdot \delta (f - f_0)$  holds,  then the spectrum of the analytic signal at the output is:
$$ Y_{+}(f)={c_2}/{2}\cdot A_x^2 \cdot \delta(f) + c_1\cdot A_x \cdot \delta(f- f_0)+ {c_2}/{2}\cdot A_x^2 \cdot \delta(f- 2 f_0). $$
  • The Dirac function at  $f = 0$  follows from the trigonometric transformation  $\cos^2(\alpha) = 1/2 + 1/2 \cdot \cos(\alpha).$
  • With  $A_1 = c_1 \cdot A_x = 0.5 \ {\rm V} $  and  $A_2 = (c_2/2) \cdot A_x^2 = 0.025 \ {\rm V}^2 $  the following is thus obtained for the distortion factor:
$$K= \frac{A_2}{A_1}= \frac{c_2/2 \cdot A_x}{c_1 }= \frac{0.025}{0.5} \hspace{0.15cm}\underline{= 5 \%}.$$


(4)  According to the solution of the last subtask  $K$  is proportional to  $A_x$. Therefore, one now obtains  $K \hspace{0.15cm}\underline{= 15 \%}.$


(5)  Now the output signal is:

$$y(t)= c_1\cdot A_x \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right) +\hspace{0.1cm} {c_2}\cdot A_x^2 \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right)^2.$$
  • The following values occur at times $t = 0$  and  $t = T_x/2$:
$$y(t=0) = c_1\cdot A_x + {c_2}\cdot A_x^2 \hspace{0.15cm}\underline{= 1.95\,{\rm V}},$$
$$y(t=T_x/2) = c_1\cdot A_x \cdot {1}/{2} + \hspace{0.1cm}{c_2}\cdot A_x^2 \cdot {1}/{4}= 0.75\,{\rm V}+ 0.1125\,{\rm V} \hspace{0.15cm}\underline{ = 0.8625\,{\rm V}}.$$