Difference between revisions of "Aufgaben:Exercise 2.6Z: Synchronous Demodulator"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Lineare Verzerrungen }} right| :Das dargestellte Blockschaltbild…“)
 
 
(53 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Lineare Verzerrungen
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Linear_Distortions
 
}}
 
}}
  
[[File:P_ID913__LZI_Z_2_6_neu.png|right|]]
+
[[File:P_ID913__LZI_Z_2_6_neu.png|right|frame|Amplitude modulator (top), <br>synchronous demodulator]]
:Das dargestellte Blockschaltbild zeigt ein Übertragungssystem mit Amplitudenmodulation (AM) und Synchrondemodulator (SD). Das Quellensignal bestehe aus zwei harmonischen Schwingungen mit den Frequenzen <i>f</i><sub>2</sub> = 2 kHz und <i>f</i><sub>5</sub> = 5 kHz:
+
The depicted block diagram shows a transmission system
 +
*with&nbsp; [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]]&nbsp; $\rm(DSB\hspace{0.03cm}&ndash;\hspace{-0.1cm}AM)$
 +
*and&nbsp; [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]]&nbsp; $\rm (SD)$.  
 +
 
 +
 
 +
Let the source signal consist of two harmonic oscillations with frequencies&nbsp; $f_2 = 2 \ \rm kHz$&nbsp; and&nbsp; $f_5 = 5 \ \rm kHz$:
 
:$$q(t) = {2 \, \rm V} \cdot {\rm cos}(\omega_2  t )+ {1 \, \rm V}
 
:$$q(t) = {2 \, \rm V} \cdot {\rm cos}(\omega_2  t )+ {1 \, \rm V}
 
\cdot {\rm sin}(\omega_5  t ) .$$
 
\cdot {\rm sin}(\omega_5  t ) .$$
  
:Dieses Signal wird bei AM mit dem dimensionslosen Trägersignal <i>z</i>(<i>t</i>) = cos(<i>&omega;</i><sub>T</sub> &middot; <i>t</i>) der Trägerfrequenz <i>f</i><sub>T</sub> = 50 kHz multipliziert. Bei Zweiseitenbandmodulation  (ZSB&ndash;AM) ist der gestrichelt eingezeichnete Block unerheblich, so dass für das Sendesignal gilt:
+
*This signal is multiplied by the dimensionless carrier signal&nbsp; $z(t) = \cos(\omega_{\rm T} \cdot T)$&nbsp; of carrier frequency&nbsp; $f_{\rm T} = 50 \ \rm kHz$. <br>For DSB&ndash;AM, the dashed block is irrelevant so that the following holds for the transmission signal:
 
:$$s(t) = q(t) \cdot  {\rm cos}(\omega_{\rm T}  t ) .$$
 
:$$s(t) = q(t) \cdot  {\rm cos}(\omega_{\rm T}  t ) .$$
  
:Im Synchrondemodulator wird das Empfängersignal <i>r</i>(<i>t</i>), das bei idealem Kanal identisch mit <i>s</i>(<i>t</i>) ist, mit dem empfangsseitigem Trägersignal <i>z</i><sub>E</sub>(<i>t</i>) multipliziert, wobei gilt:
+
*In the synchronous demodulator, the received signal&nbsp; $r(t)$&nbsp; &ndash; in an ideal channel identical to the signal&nbsp; $s(t)$&nbsp; &ndash; is multiplied by the receive-site carrier signal&nbsp; $z_{\rm E}(t)$&nbsp; where the following applies:
 
:$$z_{\rm E}(t) = K \cdot  {\rm cos}(\omega_{\rm T}  t - \Delta \varphi ) .$$
 
:$$z_{\rm E}(t) = K \cdot  {\rm cos}(\omega_{\rm T}  t - \Delta \varphi ) .$$
  
:Dieses Signal sollte nicht nur frequenzsynchron mit <i>z</i>(<i>t</i>) sein, sondern auch phasensynchron  &ndash; daher der Name &bdquo;Synchrondemodulator&rdquo;. Der obige Ansatz berücksichtigt einen Phasenversatz &Delta;<i>&phi;</i> zwischen <i>z</i>(<i>t</i>) und <i>z</i><sub>E</sub>(<i>t</i>), der idealerweise 0 sein sollte, sich bei realen Systemen aber oft nicht vermeiden lässt.
+
*This signal should not only be frequency-synchronous with&nbsp; $z(t)$&nbsp; but also phase-synchronous &nbsp; &rArr; &nbsp; hence the name "synchronous demodulator".
 +
*The above approach takes into account a phase shift between&nbsp; $z(t)$&nbsp; and&nbsp; $z_{\rm E}(t)$, which should ideally be&nbsp; $\Delta \varphi = 0$&nbsp; but often cannot be avoided in real systems.
 +
 
 +
*The output signal&nbsp; $b(t)$&nbsp;  of the second multiplier includes components around twice the carrier frequency in addition to the desired low-frequency component.
 +
*Using an ideal low-pass filter&nbsp; $\rm (LP)$&nbsp; (e.g. with cut-off frequency&nbsp; $f_{\rm T}$)&nbsp; the sink signal&nbsp; $v(t)$,&nbsp; which ideally should be equal to the source signal&nbsp; $q(t)$,&nbsp; can be obtained.
  
:Das Ausgangssignal <i>b</i>(<i>t</i>) des zweiten Multiplizierers beinhaltet neben dem gewünschten NF-Anteil auch Anteile um die doppelte Trägerfrequenz. Durch einen idealen Tiefpass &ndash; z.B. mit der Grenzfrequenz <i>f</i><sub>T</sub> &ndash; lässt sich das Sinkensignal <i>&upsilon;</i>(<i>t</i>) gewinnen, das im Idealfall gleich dem Quellensignal <i>q</i>(<i>t</i>) sein sollte.
 
  
:Die Multiplikation beim Sender mit dem Trägersignal <i>z</i>(<i>t</i>) führt im Allgemeinen zu zwei Seitenbändern. Bei der Einseitenbandmodulation (ESB&ndash;AM) wird nur eines der beiden Bänder übertragen, zum Beispiel das untere Seitenband (USB). Damit erhält man bei idealem Kanal:
+
For the transmitter, multiplication by the carrier signal&nbsp; $z(t)$&nbsp; generally results in two sidebands. In&nbsp; [[Modulation_Methods/Single-Sideband_Modulation|Single-Sideband Modulation]]&nbsp; (ESB&ndash;AM), only one of the two bands is transmitted, for example the lower sideband (USB). Thus, the following is obtained with an ideal channel:
:$$r(t) = s(t)=  {1 \, \rm V} \cdot {\rm cos}((\omega_{\rm T} -
+
:$$r(t) = s(t)=  {1 \, \rm V} \cdot {\rm cos}\big [(\omega_{\rm T} -
\omega_2  )t ) - {0.5 \, \rm V} \cdot {\rm sin}((\omega_{\rm T} -
+
\omega_2  )\cdot t \big ] - {0.5 \, \rm V} \cdot {\rm sin}\big [(\omega_{\rm T} -
\omega_5  )t ) .$$
+
\omega_5  )\cdot t \big ] .$$
  
:Hier führt die Synchrondemodulation unter Berücksichtigung eines Phasenversatzes &Delta;<i>&phi;</i>, der Konstante <nobr><i>K</i> = 4</nobr>  sowie des nachgeschalteten Tiefpasses zu folgendem verfälschten Sinkensignal:
+
*Here, synchronous demodulation results in the following distorted sink signal considering a phase shift&nbsp; $\Delta \varphi$, the constant&nbsp; $K = 4$&nbsp; and the downstream low-pass filter:
:$$v(t)=  {1 \, \rm V} \cdot \frac{1}{2}\cdot 4 \cdot{\rm cos}(
+
:$$v(t)=  {1 \, \rm V} \cdot {1}/{2}\cdot 4 \cdot{\rm cos}(
 
\omega_2 t - \Delta \varphi)+ {0.5 \, \rm V} \cdot
 
\omega_2 t - \Delta \varphi)+ {0.5 \, \rm V} \cdot
\frac{1}{2}\cdot 4 \cdot{\rm sin}( \omega_5 t - \Delta \varphi)$$
+
{1}/{2}\cdot 4 \cdot{\rm sin}( \omega_5 t - \Delta \varphi)$$
 
:$$\Rightarrow \hspace{0.5cm}v(t)=  {2 \, \rm V}  \cdot{\rm cos}(
 
:$$\Rightarrow \hspace{0.5cm}v(t)=  {2 \, \rm V}  \cdot{\rm cos}(
 
\omega_2 t - \Delta \varphi)+ {1 \, \rm V}  \cdot{\rm sin}(
 
\omega_2 t - \Delta \varphi)+ {1 \, \rm V}  \cdot{\rm sin}(
 
\omega_5 t - \Delta \varphi)$$
 
\omega_5 t - \Delta \varphi)$$
  
:Im Idealfall phasensynchroner Demodulation (&Delta;<i>&phi;</i> = 0) gilt wieder
+
*In the ideal case of phase-synchronous demodulation&nbsp; $(\Delta \varphi = 0)$,&nbsp; &nbsp; $v(t) = q(t)$ holds again.
:$$v(t) = q(t).$$
+
 
  
:<b>Hinweis:</b> Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 2.3 in diesem Buch. Die Thematik &bdquo;Amplitudenmodulation/Synchrondemodulator&rdquo; wird im Buch &bdquo;Modulationsverfahren&rdquo; noch ausführlich diskutiert werden.
 
  
:Gegeben sind die folgenden trigonometrischen Zusammenhänge:
+
 
:$$\cos^2(\alpha) =  \frac{1}{2} \cdot \left [ 1 +  
+
Please note:  
\cos(2\alpha) \right ] \hspace{0.05cm}, \\
+
*The exercise belongs to the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Linear_Distortions|Linear Distortions]].
\cos(\alpha) \cdot \cos(\beta)  = \frac{1}{2} \cdot \left[ \cos(\alpha -
+
*The topic&nbsp; "amplitude modulation/synchronous demodulator"&nbsp; is discussed in detail in the book&nbsp; [[Modulation_Methods]].
  \beta)+ \cos(\alpha + \beta) \right] \\
+
*The following trigonometric relationships are given:
\sin(\alpha) \cdot \cos(\beta)  = \frac{1}{2} \cdot \left[ \sin(\alpha -
+
:$$\cos^2(\alpha) =  {1}/{2} \cdot \big [ 1 +  
 +
\cos(2\alpha) \big ] \hspace{0.05cm}, $$
 +
:$$\cos(\alpha) \cdot \cos(\beta)  =   {1}/{2} \cdot \big[ \cos(\alpha -
 +
  \beta)+ \cos(\alpha + \beta) \big],$$
 +
:$$ \sin(\alpha) \cdot \cos(\beta)  =   {1}/{2} \cdot \big[ \sin(\alpha -
 
  \beta)+ \sin(\alpha + \beta)
 
  \beta)+ \sin(\alpha + \beta)
  \right]
+
  \big] \hspace{0.05cm}.$$
\hspace{0.05cm}.$$
+
*The signal designations result from the German original of this exercise.&nbsp; '''Here again as a listing''' &nbsp;  $q(t)$ &nbsp; &rArr; &nbsp; source signal, &nbsp; $v(t)$ &nbsp; &rArr; &nbsp; sink signal, &nbsp; $z(t)$ &nbsp; &rArr; &nbsp; transmit-site carrier signal, &nbsp; $s(t)$ &nbsp; &rArr; &nbsp; transmission signal (BP),&nbsp; $r(t)$ &nbsp; &rArr; &nbsp; received signal  (BP), &nbsp; $z_{\rm E}(t)$ &nbsp; &rArr; &nbsp; receive-site carrier signal, &nbsp; $b(t)$ &nbsp; &rArr; &nbsp; BP signal before low-pass.
 +
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What is the sink signal&nbsp; $v(t)$&nbsp; for DSB-AM and phase-synchronous modulation&nbsp; &rArr; &nbsp; $\Delta \varphi = 0$? <br>How should&nbsp; $K$&nbsp; be chosen such that &nbsp;$v(t) = q(t)$&nbsp; holds?
 +
|type="{}"}
 +
$K \ = \ $ { 2 3% }
 +
 
 +
 
 +
{The following holds: &nbsp;$K = 2$.&nbsp; Specify the sink signal&nbsp; $v(t)$&nbsp; considering a phase shift&nbsp;$\Delta \varphi$.&nbsp; Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- $v(t) = q(t)$&nbsp; holds independently of&nbsp; $\Delta \varphi$&nbsp;.
+ Richtig
+
+ $\Delta \varphi \ne 0$&nbsp; results in frequency-independent attenuation.
 +
- A phase shift&nbsp; $\Delta \varphi \ne 0$&nbsp; results in attenuation distortions.
 +
- A phase shift&nbsp; $\Delta \varphi \ne 0$&nbsp; results in phase distortions.
 +
+ $v(t) = q(t)/2$&nbsp; holds with&nbsp; $\Delta \varphi = \hspace{-0.05cm}-\hspace{0.05cm}60^\circ$.
 +
 
  
 +
{Which statements hold for synchronous demodulation of the SSB signal if a phase shift of&nbsp;$\Delta \varphi$&nbsp; is considered?
 +
|type="[]"}
 +
- Regardless of&nbsp; $\Delta \varphi$,&nbsp; $v(t) = q(t)$&nbsp; holds.
 +
- $\Delta \varphi \ne 0$&nbsp; results in frequency-independent attenuation.
 +
- A phase shift&nbsp; $\Delta \varphi \ne 0$&nbsp; results in attenuation distortions.
 +
+ A phase shift&nbsp; $\Delta \varphi \ne 0$&nbsp; results in phase distortions.
 +
- $v(t) = q(t)/2$&nbsp; holds with&nbsp; $\Delta \varphi = \hspace{-0.05cm}-\hspace{0.05cm}60^\circ$&nbsp;.
  
{Input-Box Frage
 
|type="{}"}
 
$\alpha$ = { 0.3 }
 
  
  
Line 64: Line 89:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; The following holds for the band-pass signal after the second multiplier:
'''2.'''
+
:$$b(t) = r(t) \cdot z_{\rm E}(t)= q(t) \cdot z(t) \cdot z_{\rm
'''3.'''
+
E}(t)= K \cdot q(t)\cdot
'''4.'''
+
\cos^2(\omega_{\rm T} t).$$
'''5.'''
+
 
'''6.'''
+
*Using the trigonometric relation&nbsp; $\cos^2(\omega_{\rm T} t)  =  {1}/{2} \cdot\big[ 1  +
'''7.'''
+
\cos(2\omega_{\rm T} t)\big]$,&nbsp; one obtains:
 +
:$$b(t) = {K}/{2} \cdot q(t) + {K}/{2} \cdot q(t)\cdot
 +
\cos(2\omega_{\rm T} t).$$
 +
 
 +
*The second component is located at around twice the carrier frequency&nbsp; &rArr; &nbsp; $2 f_{\rm T}$.&nbsp;
 +
*This is removed by the low-pass filter&nbsp; $($with the cut-off frequency&nbsp; $  f_{\rm G} = f_{\rm T})$&nbsp;.
 +
*Hence, the following is obtained: &nbsp; $v(t) = {K}/{2} \cdot q(t) .$
 +
*An ideal demodulation&nbsp; &rArr; &nbsp; $v(t) =  q(t)$&nbsp; is obtained with&nbsp; $\underline {K = 2}$&nbsp;.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Considering the relation
 +
:$$\cos(\omega_{\rm T} t) \cdot \cos(\omega_{\rm T} t - \Delta \varphi)  =  {1}/{2} \cdot
 +
  \big[ \cos(\Delta \varphi)+ \cos(2\omega_{\rm T} t - \Delta \varphi) \big]$$
 +
 
 +
and the downstream low-pass filter,&nbsp; which removes the component at around twice the carrier frequency, the following is obtained here with&nbsp; $ {K = 2}$:
 +
:$$v(t) = q(t) \cdot \cos(\Delta \varphi).$$
 +
 
 +
<u>Proposed solutions 2 and 5</u>&nbsp; are correct:
 +
*A phase shift&nbsp;$\Delta \varphi$&nbsp; only results in frequency-independent attenuation and not in attenuation distortions or phase distortions.
 +
*A phase shift by&nbsp;$\varphi =\pm 60^\circ$&nbsp; results in halving of the signal amplitude.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Here, <u>proposed solution 4</u>&nbsp; is correct.
 +
*Exactly the same phase shift&nbsp; $\Delta \varphi$&nbsp; occurs for both summands,&nbsp; and phase distortions occur here:
 +
:$$v(t)=  {2 \, \rm V}  \cdot{\rm cos}\big[ \omega_2 \cdot (t - \tau_2) \big]+
 +
{1 \, \rm V}  \cdot{\rm sin}\big[ \omega_5 t \cdot (t - \tau_5)\big],$$
 +
:$${\rm where}\hspace{0.5cm}\tau_2 = \frac{\Delta \varphi}{\omega_2}
 +
\hspace{0.5cm}\ne \hspace{0.5cm} \tau_5 = \frac{\Delta
 +
\varphi}{\omega_5}.$$
 +
 
 +
*A phase shift of&nbsp; $\varphi =60^\circ$ corresponding to&nbsp; $\pi/3$&nbsp; leads to the following delay times here:
 +
:$$\tau_2  =  \frac{\pi/3}{2 \pi \cdot 2\,\,{\rm  kHz }} \approx
 +
83.3\,{\rm &micro; s }, \hspace{0.5cm}
 +
\tau_5  =  \frac{\pi/3}{2 \pi \cdot 5\,\,{\rm  kHz }} \approx
 +
33.3\,{\rm &micro; s }.$$
 +
 
 +
*The lower-frequency signal is thus delayed more.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^2.3 Lineare Verzerrungen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^2.3 Linear Distortions^]]

Latest revision as of 14:29, 6 October 2021

Amplitude modulator (top),
synchronous demodulator

The depicted block diagram shows a transmission system


Let the source signal consist of two harmonic oscillations with frequencies  $f_2 = 2 \ \rm kHz$  and  $f_5 = 5 \ \rm kHz$:

$$q(t) = {2 \, \rm V} \cdot {\rm cos}(\omega_2 t )+ {1 \, \rm V} \cdot {\rm sin}(\omega_5 t ) .$$
  • This signal is multiplied by the dimensionless carrier signal  $z(t) = \cos(\omega_{\rm T} \cdot T)$  of carrier frequency  $f_{\rm T} = 50 \ \rm kHz$.
    For DSB–AM, the dashed block is irrelevant so that the following holds for the transmission signal:
$$s(t) = q(t) \cdot {\rm cos}(\omega_{\rm T} t ) .$$
  • In the synchronous demodulator, the received signal  $r(t)$  – in an ideal channel identical to the signal  $s(t)$  – is multiplied by the receive-site carrier signal  $z_{\rm E}(t)$  where the following applies:
$$z_{\rm E}(t) = K \cdot {\rm cos}(\omega_{\rm T} t - \Delta \varphi ) .$$
  • This signal should not only be frequency-synchronous with  $z(t)$  but also phase-synchronous   ⇒   hence the name "synchronous demodulator".
  • The above approach takes into account a phase shift between  $z(t)$  and  $z_{\rm E}(t)$, which should ideally be  $\Delta \varphi = 0$  but often cannot be avoided in real systems.
  • The output signal  $b(t)$  of the second multiplier includes components around twice the carrier frequency in addition to the desired low-frequency component.
  • Using an ideal low-pass filter  $\rm (LP)$  (e.g. with cut-off frequency  $f_{\rm T}$)  the sink signal  $v(t)$,  which ideally should be equal to the source signal  $q(t)$,  can be obtained.


For the transmitter, multiplication by the carrier signal  $z(t)$  generally results in two sidebands. In  Single-Sideband Modulation  (ESB–AM), only one of the two bands is transmitted, for example the lower sideband (USB). Thus, the following is obtained with an ideal channel:

$$r(t) = s(t)= {1 \, \rm V} \cdot {\rm cos}\big [(\omega_{\rm T} - \omega_2 )\cdot t \big ] - {0.5 \, \rm V} \cdot {\rm sin}\big [(\omega_{\rm T} - \omega_5 )\cdot t \big ] .$$
  • Here, synchronous demodulation results in the following distorted sink signal considering a phase shift  $\Delta \varphi$, the constant  $K = 4$  and the downstream low-pass filter:
$$v(t)= {1 \, \rm V} \cdot {1}/{2}\cdot 4 \cdot{\rm cos}( \omega_2 t - \Delta \varphi)+ {0.5 \, \rm V} \cdot {1}/{2}\cdot 4 \cdot{\rm sin}( \omega_5 t - \Delta \varphi)$$
$$\Rightarrow \hspace{0.5cm}v(t)= {2 \, \rm V} \cdot{\rm cos}( \omega_2 t - \Delta \varphi)+ {1 \, \rm V} \cdot{\rm sin}( \omega_5 t - \Delta \varphi)$$
  • In the ideal case of phase-synchronous demodulation  $(\Delta \varphi = 0)$,    $v(t) = q(t)$ holds again.



Please note:

  • The exercise belongs to the chapter  Linear Distortions.
  • The topic  "amplitude modulation/synchronous demodulator"  is discussed in detail in the book  Modulation Methods.
  • The following trigonometric relationships are given:
$$\cos^2(\alpha) = {1}/{2} \cdot \big [ 1 + \cos(2\alpha) \big ] \hspace{0.05cm}, $$
$$\cos(\alpha) \cdot \cos(\beta) = {1}/{2} \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \cos(\beta) = {1}/{2} \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$
  • The signal designations result from the German original of this exercise.  Here again as a listing   $q(t)$   ⇒   source signal,   $v(t)$   ⇒   sink signal,   $z(t)$   ⇒   transmit-site carrier signal,   $s(t)$   ⇒   transmission signal (BP),  $r(t)$   ⇒   received signal (BP),   $z_{\rm E}(t)$   ⇒   receive-site carrier signal,   $b(t)$   ⇒   BP signal before low-pass.


Questions

1

What is the sink signal  $v(t)$  for DSB-AM and phase-synchronous modulation  ⇒   $\Delta \varphi = 0$?
How should  $K$  be chosen such that  $v(t) = q(t)$  holds?

$K \ = \ $

2

The following holds:  $K = 2$.  Specify the sink signal  $v(t)$  considering a phase shift $\Delta \varphi$.  Which of the following statements are true?

$v(t) = q(t)$  holds independently of  $\Delta \varphi$ .
$\Delta \varphi \ne 0$  results in frequency-independent attenuation.
A phase shift  $\Delta \varphi \ne 0$  results in attenuation distortions.
A phase shift  $\Delta \varphi \ne 0$  results in phase distortions.
$v(t) = q(t)/2$  holds with  $\Delta \varphi = \hspace{-0.05cm}-\hspace{0.05cm}60^\circ$.

3

Which statements hold for synchronous demodulation of the SSB signal if a phase shift of $\Delta \varphi$  is considered?

Regardless of  $\Delta \varphi$,  $v(t) = q(t)$  holds.
$\Delta \varphi \ne 0$  results in frequency-independent attenuation.
A phase shift  $\Delta \varphi \ne 0$  results in attenuation distortions.
A phase shift  $\Delta \varphi \ne 0$  results in phase distortions.
$v(t) = q(t)/2$  holds with  $\Delta \varphi = \hspace{-0.05cm}-\hspace{0.05cm}60^\circ$ .


Solution

(1)  The following holds for the band-pass signal after the second multiplier:

$$b(t) = r(t) \cdot z_{\rm E}(t)= q(t) \cdot z(t) \cdot z_{\rm E}(t)= K \cdot q(t)\cdot \cos^2(\omega_{\rm T} t).$$
  • Using the trigonometric relation  $\cos^2(\omega_{\rm T} t) = {1}/{2} \cdot\big[ 1 + \cos(2\omega_{\rm T} t)\big]$,  one obtains:
$$b(t) = {K}/{2} \cdot q(t) + {K}/{2} \cdot q(t)\cdot \cos(2\omega_{\rm T} t).$$
  • The second component is located at around twice the carrier frequency  ⇒   $2 f_{\rm T}$. 
  • This is removed by the low-pass filter  $($with the cut-off frequency  $ f_{\rm G} = f_{\rm T})$ .
  • Hence, the following is obtained:   $v(t) = {K}/{2} \cdot q(t) .$
  • An ideal demodulation  ⇒   $v(t) = q(t)$  is obtained with  $\underline {K = 2}$ .


(2)  Considering the relation

$$\cos(\omega_{\rm T} t) \cdot \cos(\omega_{\rm T} t - \Delta \varphi) = {1}/{2} \cdot \big[ \cos(\Delta \varphi)+ \cos(2\omega_{\rm T} t - \Delta \varphi) \big]$$

and the downstream low-pass filter,  which removes the component at around twice the carrier frequency, the following is obtained here with  $ {K = 2}$:

$$v(t) = q(t) \cdot \cos(\Delta \varphi).$$

Proposed solutions 2 and 5  are correct:

  • A phase shift $\Delta \varphi$  only results in frequency-independent attenuation and not in attenuation distortions or phase distortions.
  • A phase shift by $\varphi =\pm 60^\circ$  results in halving of the signal amplitude.


(3)  Here, proposed solution 4  is correct.

  • Exactly the same phase shift  $\Delta \varphi$  occurs for both summands,  and phase distortions occur here:
$$v(t)= {2 \, \rm V} \cdot{\rm cos}\big[ \omega_2 \cdot (t - \tau_2) \big]+ {1 \, \rm V} \cdot{\rm sin}\big[ \omega_5 t \cdot (t - \tau_5)\big],$$
$${\rm where}\hspace{0.5cm}\tau_2 = \frac{\Delta \varphi}{\omega_2} \hspace{0.5cm}\ne \hspace{0.5cm} \tau_5 = \frac{\Delta \varphi}{\omega_5}.$$
  • A phase shift of  $\varphi =60^\circ$ corresponding to  $\pi/3$  leads to the following delay times here:
$$\tau_2 = \frac{\pi/3}{2 \pi \cdot 2\,\,{\rm kHz }} \approx 83.3\,{\rm µ s }, \hspace{0.5cm} \tau_5 = \frac{\pi/3}{2 \pi \cdot 5\,\,{\rm kHz }} \approx 33.3\,{\rm µ s }.$$
  • The lower-frequency signal is thus delayed more.