Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.7Z: About the Water Filling Algorithm"

From LNTwww
m (Text replacement - "”" to """)
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/AWGN–Kanalkapazität bei wertkontinuierlichem Eingang
+
{{quiz-Header|Buchseite=Information_Theory/AWGN_Channel_Capacity_for_Continuous_Input
 
}}
 
}}
  
[[File:P_ID2903__Inf_T_4_2_S4d.png|right|frame|Water–Filling–Prinzip  (K=4)]]
+
[[File:EN_Inf_Z_4_7.png|right|frame|Water-filling principle  (K=4)]]
Wir betrachten  K  parallele Gaußsche Kanäle  (AWGN)  mit unterschiedlichen Störleistungen  σ2k, wobei   1kK  gelten soll.  Die Grafik verdeutlicht diese Konstellation am Beispiel  K=4.  
+
We consider  K  parallel Gaussian channels  $\rm (AWGN)$  with different interference powers  σ2k,  where   1kK .  The graph illustrates this constellation using  K=4  as an example.  
  
Die Sendeleistung in den einzelnen Kanälen wird mit  Pk  bezeichnet, deren Summe den vorgegebenen Wert  PX  nicht überschreiten darf:
+
The transmission power in the individual channels is denoted by  Pk,  the sum of which must not exceed the specified value PX :
 
:$$P_1 +\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K  
 
:$$P_1 +\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K  
 
  \hspace{0.1cm}{\rm E} \left [ X_k^2\right ] \le P_{X} \hspace{0.05cm}.$$
 
  \hspace{0.1cm}{\rm E} \left [ X_k^2\right ] \le P_{X} \hspace{0.05cm}.$$
Sind die Zufallsgrößen  X1, ... , XK  gaußisch, so kann für die (gesamte) Transinformation zwischen dem Eingang  X  und dem Ausgang  Y  geschrieben werden:
+
If the random variables  X1, ... , XK  are Gaussian, then for the (total) mutual information between the input  X  and the output  Y  can be written:
 
:$$I(X_1,\text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K)  
 
:$$I(X_1,\text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K)  
 
=  1/2 \cdot \sum_{k= 1}^K  \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_k}{\sigma_k^2})\hspace{0.05cm},\hspace{0.5cm}
 
=  1/2 \cdot \sum_{k= 1}^K  \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_k}{\sigma_k^2})\hspace{0.05cm},\hspace{0.5cm}
{\rm Ergebnis\hspace{0.15cm} in \hspace{0.15cm} bit}
+
{\rm Result\hspace{0.15cm} in \hspace{0.15cm} \text{"bit"} }
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Das Maximum hierfür ist die Kanalkapazität des Gesamtsystems, wobei sich die Maximierung auf die Aufteilung der Gesamtleistung  PX  auf die einzelnen Kanäle bezieht:
+
The maximum for this is the  '''channel capacity of the total system''',  where the maximization refers to the division of the total power  PX  among the individual channels:
:$$C_K(P_X) = \max_{P_k\hspace{0.05cm},\hspace{0.15cm}{\rm mit} \hspace{0.15cm}P_1 + ... \hspace{0.05cm}+ P_K = P_X} \hspace{-0.5cm} I(X_1, \text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) \hspace{0.05cm}.$$
+
:$$C_K(P_X) = \max_{P_k\hspace{0.05cm},\hspace{0.15cm}{\rm with} \hspace{0.15cm}P_1 + ... \hspace{0.05cm}+ P_K = P_X} \hspace{-0.5cm} I(X_1, \text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) \hspace{0.05cm}.$$
 +
This maximization can be done with the  "water–filling algorithm"  shown in the above graph for  K=4.
  
Diese Maximierung kann mit dem Water–Filling–Algorithmus geschehen, der in obiger Grafik für  $K = 4$  dargestellt ist.  
+
In the present exercise, this algorithm is to be applied, assuming the following:
 +
* Two parallel Gaussian channels   ⇒   K=2,
 +
* normalized noise powers   $\sigma_1^2 = 1  and  \sigma_2^2 = 4$
 +
* normalized transmission powers   PX=10   and   PX=3 respectively.
  
In der vorliegenden Aufgabe soll dieser Algorithmus angewendet werden, wobei von folgenden Voraussetzungen auszugehen ist:
 
* Zwei parallele Gaußkanäle   ⇒   K=2,
 
* Normierte Störleistungen   σ21=1  und  σ22=4
 
*Normierte Sendeleistungen   PX=10  bzw.  PX=3.
 
  
  
  
  
 
+
Hints:
''Hinweise:''
+
*The exercise belongs to the chapter  [[Information_Theory/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN channel capacity with continuous value input]].
*Die Aufgabe gehört zum  Kapitel  [[Information_Theory/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]].
+
*Reference is made in particular to the page  [[Information_Theory/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Parallel_Gaussian_channels|Parallel Gaussian Channels]].
*Bezug genommen wird insbesondere auf die Seite  [[Information_Theory/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Parallele_Gau.C3.9Fsche_Kan.C3.A4le|Parallele Gaußkanäle]].
+
*Since the results are to be given in  "bit",  the logarithm to base  2  is used in the equations:   log2.  
*Da die Ergebnisse in „bit" angegeben werden sollen, wird in den Gleichungen  der Logarithmus zur Basis  2  verwendet:   log2.  
 
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Strategien der Leistungszuteilung sind sinnvoll?
+
{Which power allocation strategies are useful?
 
|type="[]"}
 
|type="[]"}
- Einem stark gestörten Kanal&nbsp; k&nbsp; (mit großer Störleistung&nbsp;  σ2k)&nbsp; sollte eine große Nutzleistung&nbsp; Pk&nbsp; zugewiesen werden.
+
- A very noisy channel&nbsp; k&nbsp; (with large noise power&nbsp;  σ2k)&nbsp; should be allocated a large effective power&nbsp; Pk.
+ Einem stark gestörten Kanal&nbsp; k&nbsp; (mit großer Störleistung&nbsp;  σ2k)&nbsp;  sollte nur eine kleine Nutzleistung&nbsp; Pk&nbsp; zugewiesen werden.
+
+ A very noisy channel&nbsp; k&nbsp; (with large noise power&nbsp;  σ2k)&nbsp;  should be assigned only a small useful power&nbsp; $P_k$.
+ Bei gleich guten Kanälen &nbsp; &#8658; &nbsp; σ21=...=σ2K=σ2N&nbsp; k&nbsp; sollte die Leistung&nbsp; Pk&nbsp; gleichmäßig verteilt werden.    
+
+ For&nbsp; $K$&nbsp; equally good channels &nbsp; &#8658; &nbsp; σ21=...=σ2K=σ2N&nbsp; the power&nbsp; Pk&nbsp; should be evenly distributed.
  
  
{Welche Transinformation ergibt sich, wenn man die Sendeleistung &nbsp;PX=10&nbsp; gleichmäßig auf beide Kanäle verteilt &nbsp;  (P1=P2=5)?
+
{What is the mutual information obtained by distributing the transmission power &nbsp;PX=10&nbsp; equally to both channels &nbsp;  (P1=P2=5)?
 
|type="{}"}
 
|type="{}"}
 
I(X1,X2;Y1,Y2) =  { 1.877 3% }  bit
 
I(X1,X2;Y1,Y2) =  { 1.877 3% }  bit
  
  
{Es gelte weiter&nbsp; PX=P1+P2=10.&nbsp; Welche optimale Leistungsaufteilung ergibt sich nach dem Water&ndash;Filling&ndash;Algorithmus?
+
{Let&nbsp; PX=P1+P2=10&nbsp; be further valid.&nbsp; Which optimal power distribution results according to the&nbsp; "water&ndash;filling algorithm"?
 
|type="{}"}
 
|type="{}"}
 
P1 =  { 6.5 3% }
 
P1 =  { 6.5 3% }
Line 58: Line 57:
  
  
{Wie groß ist die Kanalkapazität für&nbsp; K=2_&nbsp; und&nbsp; PX=10_?
+
{What is the channel capacity for&nbsp; K=2_&nbsp; and&nbsp; PX=10_?
 
|type="{}"}
 
|type="{}"}
 
C =  { 1.907 3% }  bit
 
C =  { 1.907 3% }  bit
  
  
{Welche Transinformation ergibt sich, wenn man die Sendeleistung&nbsp; PX=3&nbsp; gleichmäßig auf beide Kanäle verteilt &nbsp; (P1=P2=1.5)?
+
{What mutual information results if the transmit power&nbsp; PX=3&nbsp; is distributed equally to both channels &nbsp; (P1=P2=1.5)?
 
|type="{}"}
 
|type="{}"}
 
I(X1,X2;Y1,Y2) =  { 0.891 3% } bit
 
I(X1,X2;Y1,Y2) =  { 0.891 3% } bit
  
{Wie groß ist die Kanalkapazität für&nbsp; K=2_&nbsp; und&nbsp; PX=3_?
+
{What is the channel capacity for&nbsp; K=2_&nbsp; and&nbsp; PX=3_?
 
|type="{}"}
 
|type="{}"}
 
C =  { 1 3% }  bit
 
C =  { 1 3% }  bit
Line 74: Line 73:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:  
+
'''(1)'''&nbsp;  <u>Proposed solutions 2 and 3</u>&nbsp; are correct:  
*Nach den Ausführungen im  Theorieteil ist &bdquo;Water&ndash;Filling" &nbsp; &#8658; &nbsp; <u>Vorschlag 2</u> anzuwenden, wenn ungleiche Bedingungen vorliegen.
+
*According to the explanations in the theory section&nbsp; "Water&ndash;Filling" &nbsp; &#8658; &nbsp; <u>Proposal 2</u>&nbsp; is to be applied when unequal conditions exist.
* Der <u>Lösungsvorschlag 3</u> ist aber ebenfalls richtig: &nbsp; Bei gleich guten Kanälen spricht nichts dagegen, alle&nbsp; K&nbsp; Kanäle mit gleicher Leistung &nbsp; &#8658; &nbsp; &nbsp;P1=P2=&nbsp; ...&nbsp; =PK=PX/K&nbsp; zu versorgen.
+
* However,&nbsp; <u>solution proposal 3</u>&nbsp; is also correct: &nbsp; If the channels are equally good, there is nothing to prevent all&nbsp; K&nbsp; channels from being filled with the same power &nbsp; &#8658; &nbsp; &nbsp;P1=P2=&nbsp; ...&nbsp; =PK=PX/K.
  
  
  
'''(2)'''&nbsp;  Für die Transinformation gilt bei gleicher Leistungsaufteilung:
+
'''(2)'''&nbsp;  For the mutual information, with equal power distribution, the following applies:
 
:$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) \ =  \ {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{1} \right )
 
:$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) \ =  \ {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{1} \right )
 
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{4} \right )=1.292\,{\rm bit}+ 0.585\,{\rm bit}
 
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{4} \right )=1.292\,{\rm bit}+ 0.585\,{\rm bit}
Line 90: Line 89:
  
  
[[File:P_ID2906__Inf_Z_4_7b_neu.png|right|frame|Bestmögliche Aufteilung der Sendeleistung&nbsp; PX=10]]
+
[[File:EN_Inf_Z_4_7b.png|right|frame|Best possible distribution of transmit power&nbsp; PX=10]]
'''(3)'''&nbsp;  Entsprechend nebenstehender Skizze muss gelten:
+
'''(3)'''&nbsp;  According to the adjacent sketch, the following must apply:
 
:P2=P1(σ22σ21)=P13wobei P1+P2=PX=10
 
:P2=P1(σ22σ21)=P13wobei P1+P2=PX=10
 
:$$\Rightarrow \hspace{0.3cm}
 
:$$\Rightarrow \hspace{0.3cm}
Line 99: Line 98:
 
\underline{P_1 = 6.5}\hspace{0.05cm},
 
\underline{P_1 = 6.5}\hspace{0.05cm},
 
\hspace{0.3cm}\underline{P_2 = 3.5}\hspace{0.05cm}.$$
 
\hspace{0.3cm}\underline{P_2 = 3.5}\hspace{0.05cm}.$$
 +
For the&nbsp; "water level height"&nbsp; here holds:&nbsp;
 +
:H=P1+σ21=P2+σ22=7.5=6.5+1=3.5+4.
  
  
  
'''(4)'''&nbsp;  Die Kanalkapazität gibt die maximale Transinformation an.&nbsp; Das Maximum liegt durch die bestmögliche Leistungsaufteilung gemäß der Teilaufgabe '''(3)''' bereits fest.&nbsp;Für&nbsp; PX=10&nbsp; gilt:
+
'''(4)'''&nbsp;  The channel capacity indicates the maximum mutual information. &nbsp; The maximum is already fixed by the best possible power sharing according to subtask '''(3)'''.&nbsp;For&nbsp; PX=10&nbsp; holds:
 
:$$C={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{6.5}{1} \right )
 
:$$C={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{6.5}{1} \right )
 
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3.5}{4} \right )$$
 
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3.5}{4} \right )$$
Line 111: Line 112:
  
  
'''(5)'''&nbsp;  Für&nbsp; PX=3&nbsp; erhält man bei gleicher Leistungsaufteilung&nbsp; (P1=P2=1.5):
+
'''(5)'''&nbsp;  For&nbsp; PX=3, &nbsp; with the same power splitting&nbsp; (P1=P2=1.5),&nbsp; we obtain:
 
:$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) ={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{1} \right )
 
:$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) ={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{1} \right )
 
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{4} \right )
 
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{4} \right )
Line 119: Line 120:
  
  
[[File:P_ID2907__Inf_Z_4_7e_neu.png|right|frame|Bestmögliche Aufteilung der Sendeleistung&nbsp; PX=3]]
+
[[File:EN_Inf_Z_4_7e.png|right|frame|Best possible distribution of the transmit power&nbsp; PX=3]]
'''(6)'''&nbsp;  Entsprechend dem Water&ndash;Filling&ndash;Algorithmus wird die gesamte zur Verfügung stehende Sendeleistung&nbsp; PX=3&nbsp; nun vollständig dem ersten Kanal zugewiesen:
+
'''(6)'''&nbsp;  According to the water&ndash;filling algorithm, the total  transmission power&nbsp; PX=3&nbsp; is now fully allocated to the first channel:
 
:$${P_1 = 3}\hspace{0.05cm},
 
:$${P_1 = 3}\hspace{0.05cm},
 
\hspace{0.3cm}{P_2 = 0}\hspace{0.05cm}.$$
 
\hspace{0.3cm}{P_2 = 0}\hspace{0.05cm}.$$
  
*Damit erhält man für die Kanalkapazität:
+
*So here for the&nbsp; "water level height":&nbsp;
 +
:H=4=P1+σ21=P2+σ22=3+1=0+4.
 +
 
 +
*This gives for the channel capacity:
 
:$$C ={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3}{1} \right )
 
:$$C ={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3}{1} \right )
 
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{0}{4} \right )=1\,{\rm bit}+ 0\,{\rm bit}
 
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{0}{4} \right )=1\,{\rm bit}+ 0\,{\rm bit}
Line 130: Line 134:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
''Weitere Anmerkungen'':
+
Further notes:
*Während für&nbsp; PX=10&nbsp; die Differenz zwischen gleichmäßiger und bester Leistungsaufteilung nur&nbsp; 0.03&nbsp; bit betragen hat, ist bei&nbsp; PX=3&nbsp; die Differenz größer, nämlich&nbsp;  0.109&nbsp; bit.  
+
*While for&nbsp; PX=10&nbsp; the difference between even and best power splitting was only&nbsp; 0.03&nbsp; bit, for&nbsp; PX=3&nbsp; the difference is larger:&nbsp;  0.109&nbsp; bit.  
*Bei noch größerem&nbsp; PX>10&nbsp; wird der Unterschied zwischen gleichmäßiger und bestmöglicher Leistungsaufteilung noch geringer.  
+
*For even larger&nbsp; PX>10&nbsp;, the difference between even and best power splitting becomes even smaller.  
  
  
Zum Beispiel beträgt die Differenz für&nbsp; PX=100&nbsp; nur noch&nbsp; 0.001&nbsp; bit, wie die folgende Rechnung zeigt:
+
For example, for&nbsp; PX=100&nbsp; the difference is only &nbsp; 0.001&nbsp; bit as the following calculation shows:
*Für&nbsp; P1=P2=50&nbsp; erhält man:
+
*For&nbsp; P1=P2=50&nbsp; one obtains:
 
:$$I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) = {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{1} \right )
 
:$$I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) = {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{1} \right )
 
+{1}/{2}\cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{4} \right )= 2.836\,{\rm bit}+ 1.877\,{\rm bit}
 
+{1}/{2}\cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{4} \right )= 2.836\,{\rm bit}+ 1.877\,{\rm bit}
 
\hspace{0.15cm}\underline{= 4.713\,{\rm bit}}
 
\hspace{0.15cm}\underline{= 4.713\,{\rm bit}}
 
\hspace{0.05cm}.$$  
 
\hspace{0.05cm}.$$  
*Dagegen erhält man bei bestmöglicher Aufteilung &nbsp; &#8658; &nbsp; P1=51.5, P2=48.5:
+
*In contrast, the best possible split gives &nbsp; &#8658; &nbsp; P1=51.5, P2=48.5:
 
:$$C = {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{51.5}{1} \right )
 
:$$C = {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{51.5}{1} \right )
 
+{1}/{2}\cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{48.5}{4} \right )= 2.857\,{\rm bit}+ 1.857\,{\rm bit}
 
+{1}/{2}\cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{48.5}{4} \right )= 2.857\,{\rm bit}+ 1.857\,{\rm bit}
Line 150: Line 154:
  
  
[[Category:Information Theory: Exercises|^4.2 AWGN & kontinuierlicher Eingang^]]
+
[[Category:Information Theory: Exercises|^4.2 AWGN and Value-Continuous Input^]]

Latest revision as of 15:10, 7 October 2021

Water-filling principle  (K=4)

We consider  K  parallel Gaussian channels  (AWGN)  with different interference powers  σ2k,  where  1kK .  The graph illustrates this constellation using  K=4  as an example.

The transmission power in the individual channels is denoted by  Pk,  the sum of which must not exceed the specified value PX :

P1+...+PK=Kk=1E[X2k]PX.

If the random variables  X1, ... , XK  are Gaussian, then for the (total) mutual information between the input  X  and the output  Y  can be written:

I(X1,...,XK;Y1,...,YK)=1/2Kk=1log2(1+Pkσ2k),Resultin"bit".

The maximum for this is the  channel capacity of the total system,  where the maximization refers to the division of the total power  PX  among the individual channels:

CK(PX)=max

This maximization can be done with the  "water–filling algorithm"  shown in the above graph for  K = 4.

In the present exercise, this algorithm is to be applied, assuming the following:

  • Two parallel Gaussian channels   ⇒   K = 2,
  • normalized noise powers   \sigma_1^2 = 1   and   \sigma_2^2 = 4,
  • normalized transmission powers   P_X = 10   and   P_X = 3 respectively.



Hints:


Questions

1

Which power allocation strategies are useful?

A very noisy channel  k  (with large noise power  \sigma_k^2)  should be allocated a large effective power  P_k.
A very noisy channel  k  (with large noise power  \sigma_k^2)  should be assigned only a small useful power  P_k.
For  K  equally good channels   ⇒   \sigma_1^2 = \text{...} = \sigma_K^2 = \sigma_N^2  the power  P_k  should be evenly distributed.

2

What is the mutual information obtained by distributing the transmission power  P_X = 10  equally to both channels   (P_1= P_2 = 5)?

I(X_1, X_2; Y_1, Y_2) \ = \

\ \rm bit

3

Let  P_X = P_1 + P_2 = 10  be further valid.  Which optimal power distribution results according to the  "water–filling algorithm"?

P_1 \ = \

P_2 \ = \

4

What is the channel capacity for  \underline{K = 2}  and  \underline{P_X = 10}?

C \ = \

\ \rm bit

5

What mutual information results if the transmit power  P_X = 3  is distributed equally to both channels   (P_1= P_2 = 1.5)?

I(X_1, X_2; Y_1, Y_2) \ = \

\ \rm bit

6

What is the channel capacity for  \underline{K = 2}  and  \underline{P_X = 3}?

C \ = \

\ \rm bit


Solution

(1)  Proposed solutions 2 and 3  are correct:

  • According to the explanations in the theory section  "Water–Filling"   ⇒   Proposal 2  is to be applied when unequal conditions exist.
  • However,  solution proposal 3  is also correct:   If the channels are equally good, there is nothing to prevent all  K  channels from being filled with the same power   ⇒    P_1 = P_2 =  ...  = P_K = P_X/K.


(2)  For the mutual information, with equal power distribution, the following applies:

I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) \ = \ {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{4} \right )=1.292\,{\rm bit}+ 0.585\,{\rm bit} \hspace{0.15cm}\underline{= 1.877\,{\rm bit}} \hspace{0.05cm}.


Best possible distribution of transmit power  P_X = 10

(3)  According to the adjacent sketch, the following must apply:

P_2 = P_1 - (\sigma_2^2 - \sigma_1^2) = P_1 -3\hspace{0.3cm}\text{wobei }\hspace{0.3cm}P_1 + P_2 = P_X = 10
\Rightarrow \hspace{0.3cm} P_1 + (P_1 -3) = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2 \cdot P_1 = 13 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{P_1 = 6.5}\hspace{0.05cm}, \hspace{0.3cm}\underline{P_2 = 3.5}\hspace{0.05cm}.

For the  "water level height"  here holds: 

H= P_1 + \sigma_1^2= P_2 + \sigma_2^2 = 7.5 = 6.5+1 = 3.5+4.


(4)  The channel capacity indicates the maximum mutual information.   The maximum is already fixed by the best possible power sharing according to subtask (3). For  P_X = 10  holds:

C={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{6.5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3.5}{4} \right )
\Rightarrow\hspace{0.3cm} C=1.453\,{\rm bit}+ 0.453\,{\rm bit} \hspace{0.15cm}\underline{= 1.906\,{\rm bit}} \hspace{0.05cm}.


(5)  For  P_X = 3,   with the same power splitting  (P_1 = P_2 =1.5),  we obtain:

I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) ={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{4} \right ) \hspace{0.15cm}\underline{= 0.891\,{\rm bit}} \hspace{0.05cm}.


Best possible distribution of the transmit power  P_X = 3

(6)  According to the water–filling algorithm, the total transmission power  P_X = 3  is now fully allocated to the first channel:

{P_1 = 3}\hspace{0.05cm}, \hspace{0.3cm}{P_2 = 0}\hspace{0.05cm}.
  • So here for the  "water level height": 
H= 4= P_1 + \sigma_1^2= P_2 + \sigma_2^2= 3+1=0+4.
  • This gives for the channel capacity:
C ={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{0}{4} \right )=1\,{\rm bit}+ 0\,{\rm bit} \hspace{0.15cm}\underline{= 1\,{\rm bit}} \hspace{0.05cm}.

Further notes:

  • While for  P_X = 10  the difference between even and best power splitting was only  0.03  bit, for  P_X = 3  the difference is larger:  0.109  bit.
  • For even larger  P_X > 10 , the difference between even and best power splitting becomes even smaller.


For example, for  P_X = 100  the difference is only   0.001  bit as the following calculation shows:

  • For  P_1 = P_2 = 50  one obtains:
I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{1} \right ) +{1}/{2}\cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{4} \right )= 2.836\,{\rm bit}+ 1.877\,{\rm bit} \hspace{0.15cm}\underline{= 4.713\,{\rm bit}} \hspace{0.05cm}.
  • In contrast, the best possible split gives   ⇒   P_1 = 51.5, \ P_2 = 48.5:
C = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{51.5}{1} \right ) +{1}/{2}\cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{48.5}{4} \right )= 2.857\,{\rm bit}+ 1.857\,{\rm bit} \hspace{0.15cm}\underline{= 4.714\,{\rm bit}} \hspace{0.05cm}.