Difference between revisions of "Aufgaben:Exercise 1.2Z: Measurement of the Frequency Response"

From LNTwww
 
(41 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Systembeschreibung im Frequenzbereich}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain}}
  
==Z1.2 Messung von ''H''(''f'')==
 
[[File:P_ID788__LZI_Z_1_2.png |right|Gemessene Signalamplituden und Phasen bei Filter B (Aufgabe Z1.2)]]
 
Zur messtechnischen Bestimmung des Filterfrequenzgangs wird ein sinusförmiges Eingangssignal mit der Amplitude $\text{2 V}$ und vorgegebener Frequenz $f_0$ angelegt. Das Ausgangssignal $y(t)$ bzw. dessen Spektrum $Y(f)$ werden dann nach Betrag und Phase ermittelt.
 
  
Das Betragsspektrum am Ausgang von Filter '''A''' lautet mit der Frequenz $f_0 = 1 \,\text{kHz}$:  
+
[[File:EN_LZI_Z_1_2.png|right|Measured signal amplitudes <br>and phases for filter&nbsp; $\rm B$|frame]]
$$|Y_{\rm A} (f)| = 1.6\hspace{0.05cm}{\rm V} \cdot {\rm \delta } (f
+
For the metrological determination of the filter frequency response a sinusoidal input signal with an amplitude of&nbsp; $2 \hspace{0.05cm} \text{V}$&nbsp; and given frequency&nbsp; $f_0$&nbsp; is applied.&nbsp; The output signal&nbsp; $y(t)$&nbsp; or its spectrum&nbsp; $Y(f)$&nbsp; are then determined according to magnitude and phase.
 +
 
 +
*The magnitude spectrum at the output of filter&nbsp; $\rm A$&nbsp; with frequency&nbsp; $f_0 = 1 \ \text{kHz}$&nbsp; is:  
 +
:$$|Y_{\rm A} (f)| = 1.6\hspace{0.05cm}{\rm V} \cdot {\rm \delta } (f
 
\pm f_0) + 0.4\hspace{0.05cm}{\rm V} \cdot {\rm \delta }  (f \pm 3 f_0) .$$
 
\pm f_0) + 0.4\hspace{0.05cm}{\rm V} \cdot {\rm \delta }  (f \pm 3 f_0) .$$
Bei einem anderen Filter '''B''' ist das Ausgangssignal dagegen stets eine harmonische Schwingung mit der (einzigen) Frequenz $f_0$. Bei den in der Tabelle angegebenen Frequenzen $f_0$ werden die Amplituden $A_y(f_0)$ und die Phasen $φ_y(f_0)$ gemessen. Hierbei gilt:  
+
*For another filter&nbsp; $\rm B$&nbsp; the output signal is always a harmonic oscillation with the (single) frequency&nbsp; $f_0$.&nbsp; For the frequencies&nbsp; $f_0$&nbsp; given in the table the amplitudes&nbsp; $A_y(f_0)$&nbsp; and the phases&nbsp; $φ_y(f_0)$&nbsp; are measured.&nbsp; Here, the following holds:  
$$Y_{\rm B} (f) = \frac{A_y}{2} \cdot {\rm e}^{ {\rm j} \varphi_y}
+
:$$Y_{\rm B} (f) = {A_y}/{2} \cdot {\rm e}^{ {\rm j} \varphi_y}
\cdot {\rm \delta } (f + f_0) +  \frac{A_y}{2} \cdot {\rm e}^{
+
\cdot {\rm \delta } (f + f_0) +  {A_y}/{2} \cdot {\rm e}^{
 
-{\rm j} \varphi_y} \cdot {\rm \delta } (f - f_0).$$
 
-{\rm j} \varphi_y} \cdot {\rm \delta } (f - f_0).$$
Das Filter B soll in der Aufgabe in der Form
 
$$H_{\rm B}(f) =  {\rm e}^{-a_{\rm B}(f)}\cdot {\rm e}^{-{\rm j}
 
\hspace{0.05cm} \cdot \hspace{0.05cm} b_{\rm B}(f)}$$
 
  
dargestellt werden; $a_{\rm B}(f)$ wird als ''Dämpfungsverlauf'' und $b_{\rm B}(f)$ als ''Phasenverlauf'' bezeichnet.  
+
In the exercise, filter&nbsp; $\rm B$ &nbsp;should be given in the form:$$H_{\rm B}(f) =  {\rm e}^{-a_{\rm B}(f)}\cdot {\rm e}^{-{\rm j}
 +
\hspace{0.05cm} \cdot \hspace{0.05cm} b_{\rm B}(f)}.$$
 +
 
 +
Here,
 +
*$a_{\rm B}(f_0)$&nbsp; denotes the damping curve, and
 +
*$b_{\rm B}(f_0)$&nbsp; the phase response.  
 +
 
 +
 
 +
 
 +
 
 +
 
  
'''Hinweis:''' Diese Aufgabe bezieht sich auf den Theorieteil des Kapitels [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich | Systembeschreibung im Frequenzbereich]].  
+
''Please note:''  
 +
*The task belongs to the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain | System Description in Frequency Domain]].
 +
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der Aussagen sind hinsichtlich des Filters '''A''' zutreffend?  
+
{Which of the statements are true regarding filter&nbsp; $\rm A$&nbsp;?  
 
|type="[]"}
 
|type="[]"}
- Es gilt $|H(f)| =$ 0.8.
+
- The following holds: &nbsp; $|H(f)| = 0.8$.
+ Das Filter '''A''' stellt kein LZI–System dar.  
+
+ Filter&nbsp; $\rm A$&nbsp; does not represent an LTI system.  
+ Die Angabe eines Frequenzgangs ist nicht möglich.  
+
+ The specification of a frequency response is not possible.  
  
  
  
{Welche der Aussagen sind hinsichtlich des Filters '''B''' zutreffend?  
+
{Which of the statements are true regarding filter&nbsp; $\rm B$&nbsp;?  
|type="[]"}
+
|type="()"}
- Filter '''B''' ist ein Tiefpass.  
+
- Filter&nbsp; $\rm B$&nbsp; is a low-pass filter.  
- Filter '''B''' ist ein Hochpass.  
+
- Filter&nbsp; $\rm B$&nbsp; is a high-pass filter.  
+ Filter '''B''' ist ein Bandpass.  
+
+ Filter&nbsp; $\rm B$&nbsp; is a band-pass filter.  
- Filter '''B''' ist eine Bandsperre.  
+
- Filter&nbsp; $\rm B$&nbsp; is a band-stop filter.  
  
  
  
{Ermitteln Sie den Dämpfungswert und die Phase für $f_0 = \,\text{3 kHz}$.  
+
{Determine the damping and the phase value for filter&nbsp; $\rm B$&nbsp; and&nbsp; $f_0 = 3 \ \text{kHz}$.  
 
|type="{}"}
 
|type="{}"}
$a_{\rm B}(f_0 = \: \rm 3 \: kHz) =$ { 0.693 5%  } Np
+
$a_{\rm B}(f_0 = \: \rm 3 \: kHz) \ = \ $ { 0.693 5%  } &nbsp;$\text{Np}$
$b_{\rm B}(f_0 = \: \rm 3 \: kHz) =$ { 0 } Grad
+
$b_{\rm B}(f_0 = \: \rm 3 \: kHz) \ =\ $ { 0. } &nbsp;$\text{degree}$
  
  
  
{Welcher Dämpfungs– und Phasenwert ergibt sich für $f_0 = \,\text{2 kHz}$?
+
{What is the damping and phase value for&nbsp; $f_0 = 2 \ \text{kHz}$?
 
|type="{}"}
 
|type="{}"}
$a_{\rm B}(f_0 = \: \rm 2 \: kHz) =$ { 0.916 5%  } Np
+
$a_{\rm B}(f_0 = \: \rm 2 \: kHz) \ = \ $ { 0.916 5%  } &nbsp;$\text{Np}$
$b_{\rm B}(f_0 = \: \rm 2 \: kHz) =$ { 20 2%  } Grad
+
$b_{\rm B}(f_0 = \: \rm 2 \: kHz) \ =\ $ { 20 2%  } &nbsp;$\text{degree}$
  
  
Line 58: Line 67:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Bei einem LZI–System gilt $Y(f) = X(f) · H(f)$. Daher ist es nicht möglich, dass im Ausgangssignal ein Anteil mit $3 f_0$ vorhanden ist, wenn ein solcher im Eingangssignal fehlt. Das heißt: Es liegt hier kein LZI–System vor und dementsprechend ist auch kein Frequenzgang angebbar. Richtig sind demnach die $\rm \underline{Lösungsvorschläge \: 2 \: und \: 3}$.  
+
'''(1)'''&nbsp; <u>Approaches 2 und 3</u> are correct:
 +
*For an LTI system, &nbsp; $Y(f) = X(f) · H(f)$ holds.  
 +
*Therefore, it is not possible for a component with&nbsp; $3 f_0$&nbsp; to be present in the output signal if such a one is missing in the input signal.  
 +
*This means: &nbsp; There is no LTI system on hand and accordingly no frequency response can be specified.  
 +
 
 +
 
  
 +
'''(2)'''&nbsp; <u>Approach 3</u> is correct:
 +
*Based on the given numerical values for&nbsp; $A_y(f_0)$&nbsp; filter&nbsp; $\rm B$&nbsp; can be assumed to be a <u>band-pass filter</u>.
  
'''2.''' Aufgrund der angegeben Zahlenwerte für $A_y(f_0)$ kann von einem $\rm \underline{Bandpass}$ ausgegangen werden.
 
  
  
'''3.''' Mit $A_x =$ 2 V und $φ_x =$ 90° (Sinusfunktion) erhält man für $f_0 = f_3 =$ 3 kHz:  
+
'''(3)'''&nbsp; With&nbsp; $A_x = 2 \text{ V}$&nbsp;  and&nbsp; $\varphi_x = 90^\circ$&nbsp;  (sine function)&nbsp; the following is obtained for&nbsp; $f_0 = f_3 =3 \text{ kHz}$:  
$$H_{\rm B} (f_3) = \frac{A_y}{A_x} \cdot {\rm e}^{ -{\rm j}
+
:$$H_{\rm B} (f_3) = \frac{A_y}{A_x} \cdot {\rm e}^{ -{\rm j}
 
(\varphi_x - \varphi_y)} =  \frac{1\hspace{0.05cm}{\rm
 
(\varphi_x - \varphi_y)} =  \frac{1\hspace{0.05cm}{\rm
 
V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} -
 
V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} -
 
90^{\circ})} = 0.5.$$
 
90^{\circ})} = 0.5.$$
Somit ergeben sich für $f_0 =$ 3 kHz die Werte $a_{\rm B} \rm \underline{\: ≈ \: 0.693 \: Np}$ und $b_{\rm B} \rm \underline{\: = \: 0 \: (Grad)}$.  
+
Thus, for&nbsp; $f_0 = f_3 = 3 \text{ kHz}$&nbsp; the values
 +
*$a_{\rm B} (f_3)\rm \underline{\: ≈ \: 0.693 \: Np}$ and
 +
*$b_{\rm B}(f_3) \rm \underline{\: = \: 0 \: (degree)}$ are determined.  
  
  
'''4.''' In analoger Weise kann der Frequenzgang bei $f_0 = f_2 =$ 2 kHz ermittelt werden:  
+
'''(4)'''&nbsp; Analogously, the frequency response for&nbsp; $f_0 = f_2 =2 \text{ kHz}$&nbsp; can be determined:  
$$H_{\rm B} ( f_2)  =  \frac{0.8\hspace{0.05cm}{\rm
+
:$$H_{\rm B} ( f_2)  =  \frac{0.8\hspace{0.05cm}{\rm
 
V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} -
 
V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} -
 
70^{\circ})} = 0.4\cdot {\rm e}^{ -{\rm j} 20^{\circ}}.$$
 
70^{\circ})} = 0.4\cdot {\rm e}^{ -{\rm j} 20^{\circ}}.$$
Damit gilt für $f_0 = f_2 =$ 2 kHz: $a_{\rm B}(f_2) \rm \underline{\: ≈ \: 0.916 \: Np}$ und $b_{\rm B}(f_2) \rm \underline{\: = \: 20°}$.  
+
Hence, for&nbsp; $f_0 = f_2 = 2 \ \text{ kHz}$:  
Bei $f =$ –2 kHz gilt der gleiche Dämpfungswert. Die Phase hat jedoch das umgekehrte Vorzeichen. Also ist $b_{\rm B}(–f_2) =$ –20°.
+
*$a_{\rm B}(f_2) \rm \underline{\: ≈ \: 0.916 \: Np}$,
 +
* $b_{\rm B}(f_2) \rm \underline{\: = \: 20°}$.  
 +
 
 +
 
 +
For&nbsp; $f_0 = -f_2 =-\hspace{-0.01cm}2  \text{ kHz}$&nbsp; the same damping value applies. However, the phase has the opposite sign. So, &nbsp; $b_{\rm B}(–f_2) = \ –\hspace{-0.01cm}20^{\circ}.$  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 85: Line 106:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^1.1 Systembeschreibung im Frequenzbereich^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^1.1 System Description in Frequency Domain^]]

Latest revision as of 14:30, 7 October 2021


Measured signal amplitudes
and phases for filter  $\rm B$

For the metrological determination of the filter frequency response a sinusoidal input signal with an amplitude of  $2 \hspace{0.05cm} \text{V}$  and given frequency  $f_0$  is applied.  The output signal  $y(t)$  or its spectrum  $Y(f)$  are then determined according to magnitude and phase.

  • The magnitude spectrum at the output of filter  $\rm A$  with frequency  $f_0 = 1 \ \text{kHz}$  is:
$$|Y_{\rm A} (f)| = 1.6\hspace{0.05cm}{\rm V} \cdot {\rm \delta } (f \pm f_0) + 0.4\hspace{0.05cm}{\rm V} \cdot {\rm \delta } (f \pm 3 f_0) .$$
  • For another filter  $\rm B$  the output signal is always a harmonic oscillation with the (single) frequency  $f_0$.  For the frequencies  $f_0$  given in the table the amplitudes  $A_y(f_0)$  and the phases  $φ_y(f_0)$  are measured.  Here, the following holds:
$$Y_{\rm B} (f) = {A_y}/{2} \cdot {\rm e}^{ {\rm j} \varphi_y} \cdot {\rm \delta } (f + f_0) + {A_y}/{2} \cdot {\rm e}^{ -{\rm j} \varphi_y} \cdot {\rm \delta } (f - f_0).$$

In the exercise, filter  $\rm B$  should be given in the form:$$H_{\rm B}(f) = {\rm e}^{-a_{\rm B}(f)}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_{\rm B}(f)}.$$

Here,

  • $a_{\rm B}(f_0)$  denotes the damping curve, and
  • $b_{\rm B}(f_0)$  the phase response.




Please note:


Questions

1

Which of the statements are true regarding filter  $\rm A$ ?

The following holds:   $|H(f)| = 0.8$.
Filter  $\rm A$  does not represent an LTI system.
The specification of a frequency response is not possible.

2

Which of the statements are true regarding filter  $\rm B$ ?

Filter  $\rm B$  is a low-pass filter.
Filter  $\rm B$  is a high-pass filter.
Filter  $\rm B$  is a band-pass filter.
Filter  $\rm B$  is a band-stop filter.

3

Determine the damping and the phase value for filter  $\rm B$  and  $f_0 = 3 \ \text{kHz}$.

$a_{\rm B}(f_0 = \: \rm 3 \: kHz) \ = \ $

 $\text{Np}$
$b_{\rm B}(f_0 = \: \rm 3 \: kHz) \ =\ $

 $\text{degree}$

4

What is the damping and phase value for  $f_0 = 2 \ \text{kHz}$?

$a_{\rm B}(f_0 = \: \rm 2 \: kHz) \ = \ $

 $\text{Np}$
$b_{\rm B}(f_0 = \: \rm 2 \: kHz) \ =\ $

 $\text{degree}$


Solution

(1)  Approaches 2 und 3 are correct:

  • For an LTI system,   $Y(f) = X(f) · H(f)$ holds.
  • Therefore, it is not possible for a component with  $3 f_0$  to be present in the output signal if such a one is missing in the input signal.
  • This means:   There is no LTI system on hand and accordingly no frequency response can be specified.


(2)  Approach 3 is correct:

  • Based on the given numerical values for  $A_y(f_0)$  filter  $\rm B$  can be assumed to be a band-pass filter.


(3)  With  $A_x = 2 \text{ V}$  and  $\varphi_x = 90^\circ$  (sine function)  the following is obtained for  $f_0 = f_3 =3 \text{ kHz}$:

$$H_{\rm B} (f_3) = \frac{A_y}{A_x} \cdot {\rm e}^{ -{\rm j} (\varphi_x - \varphi_y)} = \frac{1\hspace{0.05cm}{\rm V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - 90^{\circ})} = 0.5.$$

Thus, for  $f_0 = f_3 = 3 \text{ kHz}$  the values

  • $a_{\rm B} (f_3)\rm \underline{\: ≈ \: 0.693 \: Np}$ and
  • $b_{\rm B}(f_3) \rm \underline{\: = \: 0 \: (degree)}$ are determined.


(4)  Analogously, the frequency response for  $f_0 = f_2 =2 \text{ kHz}$  can be determined:

$$H_{\rm B} ( f_2) = \frac{0.8\hspace{0.05cm}{\rm V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - 70^{\circ})} = 0.4\cdot {\rm e}^{ -{\rm j} 20^{\circ}}.$$

Hence, for  $f_0 = f_2 = 2 \ \text{ kHz}$:

  • $a_{\rm B}(f_2) \rm \underline{\: ≈ \: 0.916 \: Np}$,
  • $b_{\rm B}(f_2) \rm \underline{\: = \: 20°}$.


For  $f_0 = -f_2 =-\hspace{-0.01cm}2 \text{ kHz}$  the same damping value applies. However, the phase has the opposite sign. So,   $b_{\rm B}(–f_2) = \ –\hspace{-0.01cm}20^{\circ}.$