Difference between revisions of "Aufgaben:Exercise 4.3Z: Exponential and Laplace Distribution"
m (Text replacement - "value-continuous" to "continuous") |
|||
(6 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File: | + | [[File:EN_Inf_Z_4_3.png|right|frame|Exponential PDF (above) d<br>Laplace PDF (below)]] |
− | + | We consider here the probability density functions $\rm (PDF)$ of two continuous random variables: | |
− | * | + | *The random variable X is exponentially distributed (see top plot): For x<0 ⇒ fX(x)=0, and for positive x–values: |
:fX(x)=λ⋅e−λ⋅x. | :fX(x)=λ⋅e−λ⋅x. | ||
− | * | + | * On the other hand, for the Laplace distributed random variable Y in the whole range −∞<y<+∞ holds (lower sketch): |
:fY(y)=λ/2⋅e−λ⋅|y|. | :fY(y)=λ/2⋅e−λ⋅|y|. | ||
− | + | To be calculated are the differential entropies h(X) and h(Y) depending on the PDF parameter λ. For example: | |
:$$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp} | :$$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp} | ||
\hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.55cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \big [f_X(x) \big ] \hspace{0.1cm}{\rm d}x | \hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.55cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} \big [f_X(x) \big ] \hspace{0.1cm}{\rm d}x | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | If log2 is used, add the pseudo-unit "bit". | |
− | In | + | In subtasks '''(2)''' and '''(4)''' specify the differential entropy in the following form: |
− | :$$h(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(X)} \cdot \sigma^2) | + | :$$h(X) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{{\hspace{-0.01cm} \rm L}}^{\hspace{0.08cm}(X)} \cdot \sigma^2), |
− | \hspace{0. | + | \hspace{0.8cm}h(Y) = {1}/{2} \cdot {\rm log} \hspace{0.1cm} ({\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(Y)} \cdot \sigma^2) |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | Determine by which factor Γ(X)L the exponential PDF is characterized and which factor Γ(Y)L results for the Laplace PDF. | |
Line 30: | Line 30: | ||
− | + | Hints: | |
− | * | + | *The exercise belongs to the chapter [[Information_Theory/Differentielle_Entropie|Differential Entropy]]. |
− | * | + | *Useful hints for solving this task can be found in particular on the page [[Information_Theory/Differentielle_Entropie#Differential_entropy_of_some_power-constrained_random_variables|Differential entropy of some power-constrained random variables]]. |
− | * | + | *For the variance of the exponentially distributed random variable X holds, as derived in [[Aufgaben:Exercise_4.1Z:_Calculation_of_Moments|Exercise 4.1Z]]: σ2=1/λ2. |
− | * | + | *The variance of the Laplace distributed random variable Y is twice as large for the same λ: σ2=2/λ2. |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Calculate the differential entropy of the exponential distribution for λ=1. |
|type="{}"} | |type="{}"} | ||
h(X) = { 1.443 3% } bit | h(X) = { 1.443 3% } bit | ||
− | { | + | {What is the characteristic Γ(X)L for the exponential distribution corresponding to the form h(X)=1/2⋅log2(Γ(X)L⋅σ2) ? |
|type="{}"} | |type="{}"} | ||
Γ(X)L = { 7.39 3% } | Γ(X)L = { 7.39 3% } | ||
− | { | + | {Calculate the differential entropy of the Laplace distribution for λ=1. |
|type="{}"} | |type="{}"} | ||
h(Y) = { 2.443 3% } bit | h(Y) = { 2.443 3% } bit | ||
− | { | + | {What is the characteristic Γ(Y)L for the Laplace distribution corresponding to the form h(Y)=1/2⋅log2(Γ(Y)L⋅σ2)? |
|type="{}"} | |type="{}"} | ||
Γ(Y)L = { 14.78 3% } | Γ(Y)L = { 14.78 3% } | ||
Line 64: | Line 64: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Although in this exercise the result should be given in "bit", we use the natural logarithm for derivation. |
− | * | + | *Then the differential entropy is: |
:$$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp} | :$$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp} | ||
\hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm ln} \hspace{0.1cm} \big [f_X(x)\big] \hspace{0.1cm}{\rm d}x | \hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm ln} \hspace{0.1cm} \big [f_X(x)\big] \hspace{0.1cm}{\rm d}x | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *For the exponential distribution, the integration limits are 0 and +∞. In this range, the PDF fX(x) according to the specification sheet is used: |
:$$h(X) =- \int_{0}^{\infty} \hspace{-0.15cm} | :$$h(X) =- \int_{0}^{\infty} \hspace{-0.15cm} | ||
\lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x} | \lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x} | ||
Line 82: | Line 82: | ||
\lambda \cdot x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x | \lambda \cdot x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | We can see: | |
− | * | + | * The first integrand is identical to the PDF fX(x) considered here. Thus, the integral over the entire integration domain yields 1. |
− | * | + | * The second integral corresponds exactly to the definition of the mean value m1 (moment of first order). For the exponential PDF, m_1 = 1/λ holds. From this follows: |
:$$h(X) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + 1 = | :$$h(X) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + 1 = | ||
- \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} ({\rm e}/\lambda) | - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} ({\rm e}/\lambda) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *This result is to be given the additional unit "nat". Using log2 instead of ln, we obtain the differential entropy in "bit": |
:$$h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda) | :$$h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda) | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} | ||
Line 97: | Line 97: | ||
− | '''(2)''' | + | '''(2)''' Considering the equation σ2=1/λ2 valid for the exponential distribution, we can transform the result found in '''(1)''' as follows: |
: $$h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda) = | : $$h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda) = | ||
{1}/{2}\cdot {\rm log}_2 \hspace{0.1cm} ({\rm e}^2/\lambda^2) | {1}/{2}\cdot {\rm log}_2 \hspace{0.1cm} ({\rm e}^2/\lambda^2) | ||
Line 103: | Line 103: | ||
{1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\rm e}^2 \cdot \sigma^2) | {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\rm e}^2 \cdot \sigma^2) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *A comparison with the required basic form h(X)=1/2⋅log2(Γ(X)L⋅σ2) leads to the result: |
:$${\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(X)} = {\rm e}^2 \hspace{0.15cm}\underline{\approx 7.39} | :$${\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(X)} = {\rm e}^2 \hspace{0.15cm}\underline{\approx 7.39} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
Line 109: | Line 109: | ||
− | '''(3)''' | + | '''(3)''' For the Laplace distribution, we divide the integration domain into two subdomains: |
− | * Y | + | * Y negative ⇒ proportion hneg(Y), |
− | * Y | + | * Y positive ⇒ proportion hpos(Y). |
− | + | The total differential entropy, taking into account hneg(Y)=hpos(Y) is given by | |
:h(Y)=hneg(Y)+hpos(Y)=2⋅hpos(Y) | :h(Y)=hneg(Y)+hpos(Y)=2⋅hpos(Y) | ||
:$$\Rightarrow \hspace{0.3cm} h(Y) = - 2 \cdot \int_{0}^{\infty} \hspace{-0.15cm} | :$$\Rightarrow \hspace{0.3cm} h(Y) = - 2 \cdot \int_{0}^{\infty} \hspace{-0.15cm} | ||
Line 125: | Line 125: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | If we again consider that the first integral gives the value 1 (PDF area) and the second integral gives the mean value m1=1/λ we obtain: | |
:$$h(Y) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + 1 = | :$$h(Y) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + 1 = | ||
- \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} (2{\rm e}/\lambda) | - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} (2{\rm e}/\lambda) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *Since the result is required in "bit", we still need to replace "ln" by "log2": |
:$$h(Y) = {\rm log}_2 \hspace{0.1cm} (2{\rm e}/\lambda) | :$$h(Y) = {\rm log}_2 \hspace{0.1cm} (2{\rm e}/\lambda) | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} | ||
Line 138: | Line 138: | ||
− | '''(4)''' | + | '''(4)''' For the Laplace distribution, the relation σ2=2/λ2 holds. Thus, we obtain: |
:$$h(X) = {\rm log}_2 \hspace{0.1cm} (\frac{2{\rm e}}{\lambda}) = | :$$h(X) = {\rm log}_2 \hspace{0.1cm} (\frac{2{\rm e}}{\lambda}) = | ||
{1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} (\frac{4{\rm e}^2}{\lambda^2}) | {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} (\frac{4{\rm e}^2}{\lambda^2}) | ||
Line 144: | Line 144: | ||
{1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} (2 {\rm e}^2 \cdot \sigma^2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(Y)} = 2 \cdot {\rm e}^2 \hspace{0.15cm}\underline{\approx 14.78} | {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} (2 {\rm e}^2 \cdot \sigma^2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(Y)} = 2 \cdot {\rm e}^2 \hspace{0.15cm}\underline{\approx 14.78} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *Consequently, the ΓL value is twice as large for the Laplace distribution as for the exponential distribution. |
− | * | + | *Thus, the Laplace PDF is better than the exponential PDF in terms of differential entropy when power-limited signals are assumed. |
− | * | + | *Under the constraint of peak limitation, both the exponential and Laplace PDF are completely unsuitable, as is the Gaussian PDF. These all extend to infinity. |
{{ML-Fuß}} | {{ML-Fuß}} |
Latest revision as of 10:27, 11 October 2021
We consider here the probability density functions (PDF) of two continuous random variables:
- The random variable X is exponentially distributed (see top plot): For x<0 ⇒ fX(x)=0, and for positive x–values:
- fX(x)=λ⋅e−λ⋅x.
- On the other hand, for the Laplace distributed random variable Y in the whole range −∞<y<+∞ holds (lower sketch):
- fY(y)=λ/2⋅e−λ⋅|y|.
To be calculated are the differential entropies h(X) and h(Y) depending on the PDF parameter λ. For example:
- h(X)=−∫x∈supp(fX)fX(x)⋅log[fX(x)]dx.
If log2 is used, add the pseudo-unit "bit".
In subtasks (2) and (4) specify the differential entropy in the following form:
- h(X)=1/2⋅log(Γ(X)L⋅σ2),h(Y)=1/2⋅log(Γ(Y)L⋅σ2).
Determine by which factor Γ(X)L the exponential PDF is characterized and which factor Γ(Y)L results for the Laplace PDF.
Hints:
- The exercise belongs to the chapter Differential Entropy.
- Useful hints for solving this task can be found in particular on the page Differential entropy of some power-constrained random variables.
- For the variance of the exponentially distributed random variable X holds, as derived in Exercise 4.1Z: σ2=1/λ2.
- The variance of the Laplace distributed random variable Y is twice as large for the same λ: σ2=2/λ2.
Questions
Solution
- Then the differential entropy is:
- h(X)=−∫x∈supp(fX)fX(x)⋅ln[fX(x)]dx.
- For the exponential distribution, the integration limits are 0 and +∞. In this range, the PDF fX(x) according to the specification sheet is used:
- h(X)=−∫∞0λ⋅e−λ⋅x⋅[ln(λ)+ln(e−λ⋅x)]dx−ln(λ)⋅∫∞0λ⋅e−λ⋅xdx+λ⋅∫∞0λ⋅x⋅e−λ⋅xdx.
We can see:
- The first integrand is identical to the PDF fX(x) considered here. Thus, the integral over the entire integration domain yields 1.
- The second integral corresponds exactly to the definition of the mean value m1 (moment of first order). For the exponential PDF, m1=1/λ holds. From this follows:
- h(X)=−ln(λ)+1=−ln(λ)+ln(e)=ln(e/λ).
- This result is to be given the additional unit "nat". Using log2 instead of ln, we obtain the differential entropy in "bit":
- h(X)=log2(e/λ)⇒λ=1:h(X)=log2(e)=ln(e)ln(2)=1.443bit_.
(2) Considering the equation σ2=1/λ2 valid for the exponential distribution, we can transform the result found in (1) as follows:
- h(X)=log2(e/λ)=1/2⋅log2(e2/λ2)=1/2⋅log2(e2⋅σ2).
- A comparison with the required basic form h(X)=1/2⋅log2(Γ(X)L⋅σ2) leads to the result:
- Γ(X)L=e2≈7.39_.
(3) For the Laplace distribution, we divide the integration domain into two subdomains:
- Y negative ⇒ proportion hneg(Y),
- Y positive ⇒ proportion hpos(Y).
The total differential entropy, taking into account hneg(Y)=hpos(Y) is given by
- h(Y)=hneg(Y)+hpos(Y)=2⋅hpos(Y)
- ⇒h(Y)=−2⋅∫∞0λ/2⋅e−λ⋅y⋅[ln(λ/2)+ln(e−λ⋅y)]dy=−ln(λ/2)⋅∫∞0λ⋅e−λ⋅ydy+λ⋅∫∞0λ⋅y⋅e−λ⋅ydy.
If we again consider that the first integral gives the value 1 (PDF area) and the second integral gives the mean value m1=1/λ we obtain:
- h(Y)=−ln(λ/2)+1=−ln(λ/2)+ln(e)=ln(2e/λ).
- Since the result is required in "bit", we still need to replace "ln" by "log2":
- h(Y)=log2(2e/λ)⇒λ=1:h(Y)=log2(2e)=2.443bit_.
(4) For the Laplace distribution, the relation σ2=2/λ2 holds. Thus, we obtain:
- h(X)=log2(2eλ)=1/2⋅log2(4e2λ2)=1/2⋅log2(2e2⋅σ2)⇒Γ(Y)L=2⋅e2≈14.78_.
- Consequently, the ΓL value is twice as large for the Laplace distribution as for the exponential distribution.
- Thus, the Laplace PDF is better than the exponential PDF in terms of differential entropy when power-limited signals are assumed.
- Under the constraint of peak limitation, both the exponential and Laplace PDF are completely unsuitable, as is the Gaussian PDF. These all extend to infinity.