Difference between revisions of "Aufgaben:Exercise 4.3Z: Exponential and Laplace Distribution"
m (Text replacement - "value-continuous" to "continuous") |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:EN_Inf_Z_4_3.png|right|frame|PDF | + | [[File:EN_Inf_Z_4_3.png|right|frame|Exponential PDF (above) d<br>Laplace PDF (below)]] |
− | We consider here the probability density functions (PDF) of two | + | We consider here the probability density functions (PDF) of two continuous random variables: |
*The random variable X is exponentially distributed (see top plot): For x<0 ⇒ fX(x)=0, and for positive x–values: | *The random variable X is exponentially distributed (see top plot): For x<0 ⇒ fX(x)=0, and for positive x–values: | ||
:fX(x)=λ⋅e−λ⋅x. | :fX(x)=λ⋅e−λ⋅x. | ||
Line 66: | Line 66: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Although in this exercise the result should be given in "bit" , we use the natural logarithm for derivation. | + | '''(1)''' Although in this exercise the result should be given in "bit", we use the natural logarithm for derivation. |
*Then the differential entropy is: | *Then the differential entropy is: | ||
Line 72: | Line 72: | ||
\hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm ln} \hspace{0.1cm} \big [f_X(x)\big] \hspace{0.1cm}{\rm d}x | \hspace{0.03cm}(\hspace{-0.03cm}f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm ln} \hspace{0.1cm} \big [f_X(x)\big] \hspace{0.1cm}{\rm d}x | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | *For the exponential distribution, the integration limits are 0 and +∞ | + | *For the exponential distribution, the integration limits are 0 and +∞. In this range, the PDF fX(x) according to the specification sheet is used: |
:$$h(X) =- \int_{0}^{\infty} \hspace{-0.15cm} | :$$h(X) =- \int_{0}^{\infty} \hspace{-0.15cm} | ||
\lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x} | \lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x} | ||
Line 84: | Line 84: | ||
We can see: | We can see: | ||
* The first integrand is identical to the PDF fX(x) considered here. Thus, the integral over the entire integration domain yields 1. | * The first integrand is identical to the PDF fX(x) considered here. Thus, the integral over the entire integration domain yields 1. | ||
− | * The second integral corresponds exactly to the definition of the mean value m1 (moment of first order). For the exponential | + | * The second integral corresponds exactly to the definition of the mean value m1 (moment of first order). For the exponential PDF, m_1 = 1/λ holds. From this follows: |
:$$h(X) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + 1 = | :$$h(X) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + 1 = | ||
- \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} ({\rm e}/\lambda) | - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} ({\rm e}/\lambda) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | *This result is to be given the additional unit "nat". Using log2 instead of ln | + | *This result is to be given the additional unit "nat". Using log2 instead of ln, we obtain the differential entropy in "bit": |
:$$h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda) | :$$h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda) | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} | ||
Line 110: | Line 110: | ||
'''(3)''' For the Laplace distribution, we divide the integration domain into two subdomains: | '''(3)''' For the Laplace distribution, we divide the integration domain into two subdomains: | ||
− | * Y negative ⇒ | + | * Y negative ⇒ proportion hneg(Y), |
− | * Y positive ⇒ | + | * Y positive ⇒ proportion hpos(Y). |
Line 129: | Line 129: | ||
- \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} (2{\rm e}/\lambda) | - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} (2{\rm e}/\lambda) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | *Since the result is required in "bit" , we still need to replace ln by log2 | + | *Since the result is required in "bit", we still need to replace "ln" by "log2": |
:$$h(Y) = {\rm log}_2 \hspace{0.1cm} (2{\rm e}/\lambda) | :$$h(Y) = {\rm log}_2 \hspace{0.1cm} (2{\rm e}/\lambda) | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} | ||
Line 145: | Line 145: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
*Consequently, the ΓL value is twice as large for the Laplace distribution as for the exponential distribution. | *Consequently, the ΓL value is twice as large for the Laplace distribution as for the exponential distribution. | ||
− | *Thus, the Laplace | + | *Thus, the Laplace PDF is better than the exponential PDF in terms of differential entropy when power-limited signals are assumed. |
− | *Under the constraint of peak | + | *Under the constraint of peak limitation, both the exponential and Laplace PDF are completely unsuitable, as is the Gaussian PDF. These all extend to infinity. |
{{ML-Fuß}} | {{ML-Fuß}} |
Latest revision as of 10:27, 11 October 2021
We consider here the probability density functions (PDF) of two continuous random variables:
- The random variable X is exponentially distributed (see top plot): For x<0 ⇒ fX(x)=0, and for positive x–values:
- fX(x)=λ⋅e−λ⋅x.
- On the other hand, for the Laplace distributed random variable Y in the whole range −∞<y<+∞ holds (lower sketch):
- fY(y)=λ/2⋅e−λ⋅|y|.
To be calculated are the differential entropies h(X) and h(Y) depending on the PDF parameter λ. For example:
- h(X)=−∫x∈supp(fX)fX(x)⋅log[fX(x)]dx.
If log2 is used, add the pseudo-unit "bit".
In subtasks (2) and (4) specify the differential entropy in the following form:
- h(X)=1/2⋅log(Γ(X)L⋅σ2),h(Y)=1/2⋅log(Γ(Y)L⋅σ2).
Determine by which factor Γ(X)L the exponential PDF is characterized and which factor Γ(Y)L results for the Laplace PDF.
Hints:
- The exercise belongs to the chapter Differential Entropy.
- Useful hints for solving this task can be found in particular on the page Differential entropy of some power-constrained random variables.
- For the variance of the exponentially distributed random variable X holds, as derived in Exercise 4.1Z: σ2=1/λ2.
- The variance of the Laplace distributed random variable Y is twice as large for the same λ: σ2=2/λ2.
Questions
Solution
- Then the differential entropy is:
- h(X)=−∫x∈supp(fX)fX(x)⋅ln[fX(x)]dx.
- For the exponential distribution, the integration limits are 0 and +∞. In this range, the PDF fX(x) according to the specification sheet is used:
- h(X)=−∫∞0λ⋅e−λ⋅x⋅[ln(λ)+ln(e−λ⋅x)]dx−ln(λ)⋅∫∞0λ⋅e−λ⋅xdx+λ⋅∫∞0λ⋅x⋅e−λ⋅xdx.
We can see:
- The first integrand is identical to the PDF fX(x) considered here. Thus, the integral over the entire integration domain yields 1.
- The second integral corresponds exactly to the definition of the mean value m1 (moment of first order). For the exponential PDF, m_1 = 1/λ holds. From this follows:
- h(X) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + 1 = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} ({\rm e}/\lambda) \hspace{0.05cm}.
- This result is to be given the additional unit "nat". Using \log_2 instead of \ln, we obtain the differential entropy in "bit":
- h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} \hspace{0.3cm} h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}) = \frac{{\rm ln} \hspace{0.1cm} ({\rm e})}{{\rm ln} \hspace{0.1cm} (2)} \hspace{0.15cm}\underline{= 1.443\,{\rm bit}} \hspace{0.05cm}.
(2) Considering the equation \sigma^2 = 1/\lambda^2 valid for the exponential distribution, we can transform the result found in (1) as follows:
- h(X) = {\rm log}_2 \hspace{0.1cm} ({\rm e}/\lambda) = {1}/{2}\cdot {\rm log}_2 \hspace{0.1cm} ({\rm e}^2/\lambda^2) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\rm e}^2 \cdot \sigma^2) \hspace{0.05cm}.
- A comparison with the required basic form h(X) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ({\it \Gamma}_{\hspace{-0.05cm} \rm L}^{\hspace{0.08cm}(X)} \cdot \sigma^2) leads to the result:
- {\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(X)} = {\rm e}^2 \hspace{0.15cm}\underline{\approx 7.39} \hspace{0.05cm}.
(3) For the Laplace distribution, we divide the integration domain into two subdomains:
- Y negative ⇒ proportion h_{\rm neg}(Y),
- Y positive ⇒ proportion h_{\rm pos}(Y).
The total differential entropy, taking into account h_{\rm neg}(Y) = h_{\rm pos}(Y) is given by
- h(Y) = h_{\rm neg}(Y) + h_{\rm pos}(Y) = 2 \cdot h_{\rm pos}(Y)
- \Rightarrow \hspace{0.3cm} h(Y) = - 2 \cdot \int_{0}^{\infty} \hspace{-0.15cm} \lambda/2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y} \hspace{0.05cm} \cdot \hspace{0.05cm} \left [ {\rm ln} \hspace{0.1cm} (\lambda/2) + {\rm ln} \hspace{0.1cm} ({\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y})\right ]\hspace{0.1cm}{\rm d}y = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) \cdot \int_{0}^{\infty} \hspace{-0.15cm} \lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y \hspace{0.1cm} + \hspace{0.1cm} \lambda \cdot \int_{0}^{\infty} \hspace{-0.15cm} \lambda \cdot y \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y \hspace{0.05cm}.
If we again consider that the first integral gives the value 1 (PDF area) and the second integral gives the mean value m_1 = 1/\lambda we obtain:
- h(Y) = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + 1 = - \hspace{0.05cm} {\rm ln} \hspace{0.1cm} (\lambda/2) + \hspace{0.05cm} {\rm ln} \hspace{0.1cm} ({\rm e}) = {\rm ln} \hspace{0.1cm} (2{\rm e}/\lambda) \hspace{0.05cm}.
- Since the result is required in "bit", we still need to replace "\ln" by "\log_2":
- h(Y) = {\rm log}_2 \hspace{0.1cm} (2{\rm e}/\lambda) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda = 1{\rm :} \hspace{0.3cm} h(Y) = {\rm log}_2 \hspace{0.1cm} (2{\rm e}) \hspace{0.15cm}\underline{= 2.443\,{\rm bit}} \hspace{0.05cm}.
(4) For the Laplace distribution, the relation \sigma^2 = 2/\lambda^2 holds. Thus, we obtain:
- h(X) = {\rm log}_2 \hspace{0.1cm} (\frac{2{\rm e}}{\lambda}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} (\frac{4{\rm e}^2}{\lambda^2}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} (2 {\rm e}^2 \cdot \sigma^2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\it \Gamma}_{{\hspace{-0.05cm} \rm L}}^{\hspace{0.08cm}(Y)} = 2 \cdot {\rm e}^2 \hspace{0.15cm}\underline{\approx 14.78} \hspace{0.05cm}.
- Consequently, the {\it \Gamma}_{{\hspace{-0.05cm} \rm L}} value is twice as large for the Laplace distribution as for the exponential distribution.
- Thus, the Laplace PDF is better than the exponential PDF in terms of differential entropy when power-limited signals are assumed.
- Under the constraint of peak limitation, both the exponential and Laplace PDF are completely unsuitable, as is the Gaussian PDF. These all extend to infinity.