Difference between revisions of "Aufgaben:Exercise 1.2: Signal Classification"

From LNTwww
 
(29 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Signaldarstellung/Klassifizierung von Signalen}}
+
{{quiz-Header|Buchseite=Signal_Representation/Signal_classification}}
  
[[File:P_ID341_Sig_A_1_2.png|right|Vorgegebene Signalverläufe]]
+
[[File:P_ID341_Sig_A_1_2.png|right|frame|Preset signal waveforms]]
Nebenstehend sind drei Signalverläufe dargestellt:
+
Three signal curves are shown on the right:
*Das Signal <math>x_1(t)</math> wird genau zum Zeitpunkt $t = 0$ eingeschaltet und besitzt für $t > 0$ den Wert $1\,\text{V}$.
+
*The blue signal&nbsp; <math>x_1(t)</math>&nbsp; is switched on at time&nbsp; $t = 0$&nbsp; and has the value&nbsp; $1\,\text{V}\,$ for&nbsp; $t > 0$&nbsp;.
*Das rote Signal <math>x_2(t)</math> ist für $t < 0$ identisch $0$, springt bei $t = 0$ auf $1\,\text{V}$ an und fällt danach mit der Zeitkonstanten $1\,\text{ms}$ ab. Für $t > 0$ gilt:
+
*The red signal&nbsp; <math>x_2(t)\equiv 0</math>&nbsp;  for&nbsp; $t < 0$&nbsp; and jumps to&nbsp; $1\,\text{V}$&nbsp; at&nbsp; $t = 0$&nbsp;.&nbsp; It then decreases with the time constant&nbsp; $1\,\text{ms}$&nbsp;.&nbsp; <br>For&nbsp; $t > 0$&nbsp; the following applies:
  
:<math>x_2(t) = 1\,\text{V} \cdot {\rm e}^{- {t}/(1\,\text{ms})}.</math>
+
::<math>x_2(t) = 1\,\text{V} \cdot {\rm e}^{- {t}/(1\,\text{ms})}.</math>
  
*Entsprechend gilt für das grün dargestellte Signal für alle Zeiten $t$:
+
*Correspondingly, the following applies to the green signal&nbsp; <math>x_3(t)</math>&nbsp; for all&nbsp; $t$:
  
:<math>x_3(t) = 1\,\text{V} \cdot {\rm e}^{- {|t|}/(1\,\text{ms})}.</math>
+
::<math>x_3(t) = 1\,\text{V} \cdot {\rm e}^{- {|\hspace{0.05cm}t\hspace{0.05cm}|}/(1\,\text{ms})}.</math>
  
Diese drei Signale sollen nun von Ihnen nach den folgenden Kriterien klassifiziert werden:
+
You should now classify these three signals according to the following criteria:
*deterministisch bzw. stochastisch,
+
*deterministic or stochastic,
*kausal bzw. akausal,
+
*causal or non&ndash;causal,
*energiebegrenzt bzw. leistungsbegrenzt,
+
*energy-limited or power-limited,
*wertkontinuierlich bzw. wertdiskret,
+
*continuous-valued or discrete-valued,
*zeitkontinuierlich bzw. zeitdiskret.
+
*continuous in time or discrete in time.
  
  
''Hinweis:''
 
* Die Aufgabe geört zum Kapitel [[Signaldarstellung/Klassifizierung_von_Signalen|Klassifizierung von Signalen]].
 
* Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
  
  
===Fragebogen===
+
 
 +
''Note:''
 +
* This exercise belongs to the chapter&nbsp;[[Signal_Representation/Signal_classification|Signal Classification]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ Alle hier betrachteten Signale sind deterministisch.
+
+ All signals considered here are deterministic.
- Alle hier betrachteten Signale sind von stochastischer Natur.
+
- All signals considered here are of stochastic nature.
+ Es handelt sich stets um zeitkontinuierliche Signale.
+
+ The signals are always continuous in time.
- Es handelt sich stets um wertkontinuierliche Signale.
+
- The signals are always continuous in value.
  
{Welche Signale sind gemäß der Definition im Theorieteil kausal?
+
{Which signals are causal according to the definition in the theory part?
 
|type="[]"}
 
|type="[]"}
 
+ <math>x_1(t)</math>,
 
+ <math>x_1(t)</math>,
Line 41: Line 44:
 
- <math>x_3(t)</math>.
 
- <math>x_3(t)</math>.
  
{Berechnen Sie die auf den Einheitswiderstand $R = 1 Ω$ bezogene Energie <math>E_2</math> des Signals <math>x_2(t)</math>. Wie groß ist die Leistung <math>P_2</math> dieses Signals?
+
{Calculate the energy&nbsp; $E_2$&nbsp; of the signal&nbsp; <math>x_2(t)</math> related to the unit resistance&nbsp; $R = 1\ Ω$. <br>What is the power&nbsp; <math>P_2</math>&nbsp; of this signal?
 
|type="{}"}
 
|type="{}"}
<math>E_2 = </math>{ 0.5 5% }  $&nbsp; \cdot 10^{-3}\,\text{V}^2\text{s}$
+
<math>E_2 \ = \ </math>{ 0.5 5% }  $\ \cdot 10^{-3}\,\text{V}^2\text{s}$
  
<math>P_2 = </math>{ 0. }  $&nbsp; \cdot \text{Vs}$
+
<math>P_2 \ = </math>{ 0. }  $\ \cdot \text{Vs}$
  
{Welche der Signale besitzen eine endliche Energie?
+
{Which of the signals have a finite energy?
 
|type="[]"}
 
|type="[]"}
 
- <math>x_1(t)</math>,
 
- <math>x_1(t)</math>,
Line 55: Line 58:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Zutreffend sind also die <u>Lösungsvorschläge 1 und 3</u>:
+
'''(1)'''&nbsp; The <u>solutions 1 and 3</u> are applicable:
*Alle Signale können in analytischer Form vollständig beschrieben werden; sie sind deshalb auch deterministisch.  
+
*All signals can be described completely in analytical form;&nbsp; therefore they are deterministic.  
*Alle Signale sind außerdem für alle Zeiten $t$ eindeutig definiert, nicht nur zu gewissen Zeitpunkten. Deshalb handelt es sich stets um zeitkontinuierliche Signale.
+
*All signals are also clearly defined for all times&nbsp; $t$&nbsp; not only at certain times.&nbsp; Therefore, they are always continuous-time signals.
*Die Signalamplituden von <math>x_2(t)</math> und <math>x_3(t)</math> können alle beliebigen Werte zwischen $0$ und $1\,\text{V}$ annehmen; sie sind deshalb wertkontinuierlich.  
+
*The signal amplitudes of&nbsp; <math>x_2(t)</math>&nbsp; and&nbsp; <math>x_3(t)</math>&nbsp; can take any values between&nbsp; $0$&nbsp; and&nbsp; $1\,\text{V}$&nbsp: they are <b>continuous in value</b>.  
*Dagegen sind beim Signal <math>x_1(t)</math> nur die zwei Signalwerte $0$ und $1\,\text{V}$ möglich, und es liegt ein wertdiskretes Signal vor.  
+
*On the other hand, with the signal&nbsp; <math>x_1(t)</math>&nbsp; only the two signal values&nbsp; $0$&nbsp; and&nbsp; $1\,\text{V}$&nbsp; are possible; this signal is <b>discrete in value</b>.  
 +
 
 +
 
  
'''2.''' Ein Signal bezeichnet man als kausal, wenn es für Zeiten $t < 0$ nicht existiert bzw. identisch $0$ ist. Dies gilt für die <u>beiden ersten Signale</u> <math>x_1(t)</math> und <math>x_2(t)</math>. Dagegen gehört <math>x_3(t)</math> zur Klasse der akausalen Signale.
+
'''(2)'''&nbsp;  Correct are the <u>solutions 1 and 2</u>:
 +
*A signal is called causal if for times&nbsp; $t < 0$&nbsp; it does not exist or it is identically zero.&nbsp; This applies to the signals&nbsp; <math>x_1(t)</math>&nbsp; and&nbsp; <math>x_2(t)</math>.  
 +
*In contrast,&nbsp; <math>x_3(t)</math>&nbsp; belongs to the class of non-causal signals.
  
'''3.'''  Nach der allgemeinen Definition gilt:
 
  
<math>E_2=\lim_{T_{\rm M}\to\infty}\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x^2_2(t)\,\hspace{0.1cm}{\rm d}t.</math>
 
  
Im vorliegenden Fall ist die untere Integrationsgrenze $0$ und es kann auf die Grenzwertbildung verzichtet werden. Man erhält:
+
'''(3)'''&nbsp;  According to the general definition:
 +
 
 +
::<math>E_2=\lim_{T_{\rm M}\to\infty}\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x^2_2(t)\,\hspace{0.1cm}{\rm d}t.</math>
 +
 
 +
In this case, the lower integration limit is zero and the upper integration limit&nbsp; $+\infty$.&nbsp; You get:
 
   
 
   
<math>E_2=\int^\infty_0 (1{\rm V})^2\cdot{\rm e}^{-2t/(1\rm ms)}\,\hspace{0.1cm}{\rm d}t = 5 \cdot 10^{-4}\hspace{0.1cm} \rm V^2s  \hspace{0.15cm}\underline{= 0.5 \cdot 10^{-3}\hspace{0.1cm} \rm V^2s}.  </math>  
+
::<math>E_2=\int^\infty_0 (1{\rm V})^2\cdot{\rm e}^{-2t/(1\rm ms)}\,\hspace{0.1cm}{\rm d}t = 5 \cdot 10^{-4}\hspace{0.1cm} \rm V^2s  \hspace{0.15cm}\underline{= 0.5 \cdot 10^{-3}\hspace{0.1cm} \rm V^2s}.  </math>  
 +
 
 +
With finite energy, the associated power is always negligible.&nbsp; From this follows&nbsp; $P_2\hspace{0.15cm}\underline{ = 0}$.
 +
 
  
Bei endlicher Energie ist die zugehörige Leistung stets verschwindend klein. Daraus folgt $P_2 = 0$.
 
  
'''4.'''  Wie bereits in der letzten Teilaufgabe berechnet wurde, besitzt <math>x_2(t)</math> eine endliche Energie:&nbsp;  
+
'''(4)'''&nbsp; Correct are the <u>solutions 2 and 3</u>:
$E_2= 0.5 \cdot 10^{-3}\hspace{0.1cm} {\rm V^2}s. $  
+
*As already calculated in the last subtask,&nbsp; <math>x_2(t)</math>&nbsp; has a finite energy:&nbsp;  
 +
:$$E_2= 0.5 \cdot 10^{-3}\hspace{0.1cm} {\rm V^2s}. $$  
  
Die Energie des Signals <math>x_3(t)</math> ist doppelt so groß, da nun der Zeitbereich $t < 0$ den gleichen Beitrag liefert wie der Zeitbereich $t > 0$. Also ist $E_3= 10^{-3}\hspace{0.1cm} {\rm V^2s}$ &nbsp; ⇒  &nbsp; Richtig sind hier die <u>Lösungsvorschläge 2 und 3</u>.
+
*The energy of the signal&nbsp; <math>x_3(t)</math>&nbsp; is twice as large, since now the time domain&nbsp; $t < 0$&nbsp; makes the same contribution as the time domain&nbsp; $t > 0$. So
 +
:$$E_3= 10^{-3}\hspace{0.1cm} {\rm V^2s}.$$  
  
Beim Signal <math>x_1(t)</math> divergiert das Energieintegral: $E_1 \rightarrow \infty$. Dieses Signal weist eine endliche Leistung auf &nbsp;&rArr;&nbsp; $P_1= 0.5 \hspace{0.1cm} {\rm V}^2$ und ist dementsprechend <u>leistungsbegrenzt</u>. Das Ergebnis berücksichtigt, dass das Signal <math>x_1(t)</math> in der Hälfte der Zeit ($t < 0$) identisch $0$ ist.
+
*At signal&nbsp; <math>x_1(t)</math>&nbsp; the energy integral diverges:&nbsp; $E_1 \rightarrow \infty$.&nbsp; This signal has a finite power &nbsp; &rArr; &nbsp; $P_1= 0.5 \hspace{0.1cm} {\rm V}^2$.
 +
*The result also takes into account that the signal&nbsp; <math>x_1(t)</math>&nbsp; in half the time&nbsp; $(t < 0)$&nbsp; is identical to zero.
 +
* The signal&nbsp; <math>x_1(t)</math>&nbsp; therefore is&nbsp; <u>power&ndash;limited</u>.  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^1. Grundbegriffe der Nachrichtentechnik^]]
+
[[Category:Signal Representation: Exercises|^1.2 Signal Classification^]]

Latest revision as of 09:59, 11 October 2021

Preset signal waveforms

Three signal curves are shown on the right:

  • The blue signal  \(x_1(t)\)  is switched on at time  $t = 0$  and has the value  $1\,\text{V}\,$ for  $t > 0$ .
  • The red signal  \(x_2(t)\equiv 0\)  for  $t < 0$  and jumps to  $1\,\text{V}$  at  $t = 0$ .  It then decreases with the time constant  $1\,\text{ms}$ . 
    For  $t > 0$  the following applies:
\[x_2(t) = 1\,\text{V} \cdot {\rm e}^{- {t}/(1\,\text{ms})}.\]
  • Correspondingly, the following applies to the green signal  \(x_3(t)\)  for all  $t$:
\[x_3(t) = 1\,\text{V} \cdot {\rm e}^{- {|\hspace{0.05cm}t\hspace{0.05cm}|}/(1\,\text{ms})}.\]

You should now classify these three signals according to the following criteria:

  • deterministic or stochastic,
  • causal or non–causal,
  • energy-limited or power-limited,
  • continuous-valued or discrete-valued,
  • continuous in time or discrete in time.



Note:


Questions

1

Which of the following statements are true?

All signals considered here are deterministic.
All signals considered here are of stochastic nature.
The signals are always continuous in time.
The signals are always continuous in value.

2

Which signals are causal according to the definition in the theory part?

\(x_1(t)\),
\(x_2(t)\),
\(x_3(t)\).

3

Calculate the energy  $E_2$  of the signal  \(x_2(t)\) related to the unit resistance  $R = 1\ Ω$.
What is the power  \(P_2\)  of this signal?

\(E_2 \ = \ \)

$\ \cdot 10^{-3}\,\text{V}^2\text{s}$
\(P_2 \ = \ \)

$\ \cdot \text{Vs}$

4

Which of the signals have a finite energy?

\(x_1(t)\),
\(x_2(t)\),
\(x_3(t)\).


Solution

(1)  The solutions 1 and 3 are applicable:

  • All signals can be described completely in analytical form;  therefore they are deterministic.
  • All signals are also clearly defined for all times  $t$  not only at certain times.  Therefore, they are always continuous-time signals.
  • The signal amplitudes of  \(x_2(t)\)  and  \(x_3(t)\)  can take any values between  $0$  and  $1\,\text{V}$&nbsp: they are continuous in value.
  • On the other hand, with the signal  \(x_1(t)\)  only the two signal values  $0$  and  $1\,\text{V}$  are possible; this signal is discrete in value.


(2)  Correct are the solutions 1 and 2:

  • A signal is called causal if for times  $t < 0$  it does not exist or it is identically zero.  This applies to the signals  \(x_1(t)\)  and  \(x_2(t)\).
  • In contrast,  \(x_3(t)\)  belongs to the class of non-causal signals.


(3)  According to the general definition:

\[E_2=\lim_{T_{\rm M}\to\infty}\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x^2_2(t)\,\hspace{0.1cm}{\rm d}t.\]

In this case, the lower integration limit is zero and the upper integration limit  $+\infty$.  You get:

\[E_2=\int^\infty_0 (1{\rm V})^2\cdot{\rm e}^{-2t/(1\rm ms)}\,\hspace{0.1cm}{\rm d}t = 5 \cdot 10^{-4}\hspace{0.1cm} \rm V^2s \hspace{0.15cm}\underline{= 0.5 \cdot 10^{-3}\hspace{0.1cm} \rm V^2s}. \]

With finite energy, the associated power is always negligible.  From this follows  $P_2\hspace{0.15cm}\underline{ = 0}$.


(4)  Correct are the solutions 2 and 3:

  • As already calculated in the last subtask,  \(x_2(t)\)  has a finite energy: 
$$E_2= 0.5 \cdot 10^{-3}\hspace{0.1cm} {\rm V^2s}. $$
  • The energy of the signal  \(x_3(t)\)  is twice as large, since now the time domain  $t < 0$  makes the same contribution as the time domain  $t > 0$. So
$$E_3= 10^{-3}\hspace{0.1cm} {\rm V^2s}.$$
  • At signal  \(x_1(t)\)  the energy integral diverges:  $E_1 \rightarrow \infty$.  This signal has a finite power   ⇒   $P_1= 0.5 \hspace{0.1cm} {\rm V}^2$.
  • The result also takes into account that the signal  \(x_1(t)\)  in half the time  $(t < 0)$  is identical to zero.
  • The signal  \(x_1(t)\)  therefore is  power–limited.