Difference between revisions of "Aufgaben:Exercise 5.1: Sampling Theorem"

From LNTwww
m (Text replacement - "Time Discrete" to "Discrete-Time")
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Zeitdiskrete Signaldarstellung
+
{{quiz-Header|Buchseite=Signal_Representation/Time_Discrete_Signal_Representation
 
}}
 
}}
  
[[File:P_ID1126__Sig_A_5_1.png|right|frame|Zur Abtastung eines analogen Signals  $x(t)$]]
+
[[File:P_ID1126__Sig_A_5_1.png|right|frame|Sampling of an analog signal  $x(t)$]]
  
Gegeben ist ein Analogsignal  $x(t)$  entsprechend der Skizze:  
+
Given is an analog signal  $x(t)$  according to the sketch:  
*Bekannt ist, dass dieses Signal keine höheren Frequenzen als  $B_{\rm NF} = 4 \ \text{kHz}$  beinhaltet.  
+
*It is known that this signal does not contain any frequencies higher than  $B_{\rm NF} = 4 \ \text{kHz}$.  
*Durch Abtastung mit der Abtastrate  $f_{\rm A}$  erhält man das in der Grafik rot skizzierte Signal  $x_{\rm A}(t)$.
+
*By sampling with the sampling rate  $f_{\rm A}$ , the signal  $x_{\rm A}(t)$ sketched in red in the diagram is obtained.
*Zur Signalrekonstruktion wird ein Tiefpass verwendet, für dessen Frequenzgang gilt:
+
*For signal reconstruction a low-pass filter is used, for whose frequency response applies:
 
   
 
   
 
:$$H(f)  = \left\{ \begin{array}{c} 1  \\
 
:$$H(f)  = \left\{ \begin{array}{c} 1  \\
Line 18: Line 18:
 
\end{array}$$
 
\end{array}$$
  
Der Bereich zwischen den Frequenzen  $f_1$  und  $f_2 > f_1$  ist für die Lösung dieser Aufgabe nicht relevant.
+
The range between the frequencies  $f_1$  and  $f_2 > f_1$  is not relevant for the solution of this task.
  
Die Eckfrequenzen  $f_1$  und  $f_2$  sind so zu bestimmen, dass das Ausgangssignal  $y(t)$  des Tiefpasses mit dem Signal  $x(t)$  exakt übereinstimmt.
+
The corner frequencies  $f_1$  and  $f_2$  are to be determined in such a way that the output signal  $y(t)$  of the low-pass filter exactly matches the signal  $x(t)$ .
  
  
Line 30: Line 30:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Signaldarstellung/Zeitdiskrete_Signaldarstellung|Zeitdiskrete Signaldarstellung]].
+
*This task belongs to the chapter  [[Signal_Representation/Time_Discrete_Signal_Representation|Discrete-Time Signal Representation]].
 
   
 
   
*Zu der hier behandelten Thematik gibt es ein interaktives Applet:  [[Applets:Abtastung_periodischer_Signale_und_Signalrekonstruktion_(Applet)|Abtastung periodischer Signale & Signalrekonstruktion]]
+
*There is an interactive applet for the topic dealt with here:  [[Applets:Sampling_of_Analog_Signals_and_Signal_Reconstruction|Sampling of Analog Signals and Signal Reconstruction]]
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Ermitteln Sie aus der Grafik die zugrundeliegende Abtastrate.
+
{Determine the underlying sampling rate from the graph.
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm A}\ = \ $  { 10 3% } &nbsp;$\text{kHz}$
 
$f_{\rm A}\ = \ $  { 10 3% } &nbsp;$\text{kHz}$
  
{Bei welchen Frequenzen besitzt die Spektralfunktion&nbsp;  $X_{\rm A}(f)$&nbsp; mit Sicherheit <u>keine Anteile</u>?
+
{At which frequencies does the spectral function&nbsp;  $X_{\rm A}(f)$&nbsp; have <u>no components</u> with certainty?
 
|type="[]"}
 
|type="[]"}
 
- $f =  2.5 \ \text{kHz},$
 
- $f =  2.5 \ \text{kHz},$
Line 50: Line 50:
 
+ $f=  34.5 \ \text{kHz}.$
 
+ $f=  34.5 \ \text{kHz}.$
  
{Wie groß muss die untere Eckfrequenz&nbsp; $f_1$&nbsp; mindestens sein, damit das Signal perfekt rekonstruiert wird?
+
{What is the minimum size of the lower cut-off frequency&nbsp; $f_1$&nbsp; that the signal is perfectly reconstructed?
 
|type="{}"}
 
|type="{}"}
 
$f_{1,\ \text{min}}\ = \ ${ 4 3% } &nbsp;$\text{kHz}$
 
$f_{1,\ \text{min}}\ = \ ${ 4 3% } &nbsp;$\text{kHz}$
  
{Wie groß darf die obere Eckfrequenz&nbsp; $f_2$&nbsp; höchstens sein, damit das Signal perfekt rekonstruiert wird?
+
{What is the maximum size of the upper corner frequency&nbsp; $f_2$&nbsp; that the signal is perfectly reconstructed?
 
|type="{}"}
 
|type="{}"}
 
$f_{2,\ \text{max}}\ = \ ${ 6 3% } &nbsp;$\text{kHz}$
 
$f_{2,\ \text{max}}\ = \ ${ 6 3% } &nbsp;$\text{kHz}$
Line 61: Line 61:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Der Abstand zweier benachbarter Abtastwerte beträgt&nbsp; $T_{\rm A} = 0.1 \ \text{ms}$. Somit erhält man für die Abtastrate&nbsp; $f_{\rm A} = 1/ T_{\rm A} \;\underline {= 10 \ \text{kHz}}$.
+
'''(1)'''&nbsp;  The distance between two adjacent samples is&nbsp; $T_{\rm A} = 0.1 \ \text{ms}$.&nbsp; Thus, for the sampling rate&nbsp; $f_{\rm A} = 1/ T_{\rm A} \;\underline {= 10 \ \text{kHz}}$is obtained.
  
  
[[File:P_ID1127__Sig_A_5_1_b.png|450px|right|frame|Spektrum&nbsp; $X_{\rm A}(f)$&nbsp; des abgetasteten Signals (schematische Darstellung)]]
+
[[File:P_ID1127__Sig_A_5_1_b.png|450px|right|frame|Spectrum&nbsp; $X_{\rm A}(f)$&nbsp; of the sampled signal <br>(schematic representation)]]
'''(2)'''&nbsp;  Richtig sind die <u>Lösungsvorschläge 2 und 4</u>:
+
'''(2)'''&nbsp;  Proposed <u>solutions 2 and 4</u> are correct:
*Das Spektrum&nbsp; $X_{\rm A}(f)$&nbsp; des abgetasteten Signals erhält man aus&nbsp; $X(f)$&nbsp; durch periodische Fortsetzung im Abstand&nbsp; $f_{\rm A} =  10 \ \text{kHz}$.  
+
*The spectrum&nbsp; $X_{\rm A}(f)$&nbsp; of the sampled signal is obtained from&nbsp; $X(f)$&nbsp; by periodic continuation at a distance of&nbsp; $f_{\rm A} =  10 \ \text{kHz}$.  
*Aus der Skizze erkennt man, dass&nbsp; $X_{\rm A}(f)$&nbsp; durchaus Anteile bei&nbsp; $f =  2.5 \ \text{kHz}$&nbsp; und&nbsp;  $f =  6.5 \ \text{kHz}$&nbsp; besitzen kann.
+
*From the sketch you can see that&nbsp; $X_{\rm A}(f)$&nbsp; can have signal parts at&nbsp; $f =  2.5 \ \text{kHz}$&nbsp; and&nbsp;  $f =  6.5 \ \text{kHz}$;.
* Dagegen gibt es  bei&nbsp;  $f =  5.5 \ \text{kHz}$&nbsp; keine Anteile.  
+
*In contrast, there are no components at&nbsp;  $f =  5.5 \ \text{kHz}$.
*Auch bei&nbsp;  $f =  34.5 \ \text{kHz}$&nbsp; wird  auf jeden Fall&nbsp; $X_{\rm A}(f) = 0$&nbsp; gelten.  
+
*Also at&nbsp;  $f =  34.5 \ \text{kHz}$&nbsp; will be valid&nbsp; $X_{\rm A}(f) = 0$.
 
<br clear=all>
 
<br clear=all>
'''(3)'''&nbsp; Es muss sichergestellt sein, dass alle Frequenzen des Analogsignals mit&nbsp; $H(f) = 1$&nbsp; bewertet werden.  
+
'''(3)'''&nbsp; It must be ensured that all frequencies of the analog signal are weighted with&nbsp; $H(f) = 1$.
*Daraus folgt entsprechend der Skizze:  
+
*From this follows according to the sketch:  
  
 
:$$f_{1, \ \text{min}} = B_{\rm NF} \;\underline{= 4 \ \text{kHz}}.$$
 
:$$f_{1, \ \text{min}} = B_{\rm NF} \;\underline{= 4 \ \text{kHz}}.$$
  
  
'''(4)'''&nbsp; Ebenso muss garantiert werden, dass alle Spektralanteile von&nbsp; $X_{\rm A}(f)$, die in&nbsp; $X(f)$&nbsp; nicht enthalten sind, durch den Tiefpass entfernt werden.  
+
'''(4)'''&nbsp; Likewise, it must be guaranteed that all spectral components of&nbsp; $X_{\rm A}(f)$, that are not contained in&nbsp; $X(f)$&nbsp; are removed by the low-pass filter.  
*Entsprechend der Skizze muss also gelten:
+
*According to the sketch, the following must apply:
  
 
:$$f_{2, \ \text{max}} = f_{\rm A} – B_{\rm NF} \;\underline{= 6 \ \text{kHz}}.$$
 
:$$f_{2, \ \text{max}} = f_{\rm A} – B_{\rm NF} \;\underline{= 6 \ \text{kHz}}.$$
Line 86: Line 86:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^5. Zeit- und frequenzdiskrete Signaldarstellung^]]
+
[[Category:Signal Representation: Exercises|^5.1 Discrete-Time Signal Representation^]]

Latest revision as of 10:03, 11 October 2021

Sampling of an analog signal  $x(t)$

Given is an analog signal  $x(t)$  according to the sketch:

  • It is known that this signal does not contain any frequencies higher than  $B_{\rm NF} = 4 \ \text{kHz}$.
  • By sampling with the sampling rate  $f_{\rm A}$ , the signal  $x_{\rm A}(t)$ sketched in red in the diagram is obtained.
  • For signal reconstruction a low-pass filter is used, for whose frequency response applies:
$$H(f) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |f| < f_1 \hspace{0.05cm}, \\ |f| > f_2 \hspace{0.05cm} \\ \end{array}$$

The range between the frequencies  $f_1$  and  $f_2 > f_1$  is not relevant for the solution of this task.

The corner frequencies  $f_1$  and  $f_2$  are to be determined in such a way that the output signal  $y(t)$  of the low-pass filter exactly matches the signal  $x(t)$ .





Hints:


Questions

1

Determine the underlying sampling rate from the graph.

$f_{\rm A}\ = \ $

 $\text{kHz}$

2

At which frequencies does the spectral function  $X_{\rm A}(f)$  have no components with certainty?

$f = 2.5 \ \text{kHz},$
$f= 5.5 \ \text{kHz},$
$f= 6.5 \ \text{kHz},$
$f= 34.5 \ \text{kHz}.$

3

What is the minimum size of the lower cut-off frequency  $f_1$  that the signal is perfectly reconstructed?

$f_{1,\ \text{min}}\ = \ $

 $\text{kHz}$

4

What is the maximum size of the upper corner frequency  $f_2$  that the signal is perfectly reconstructed?

$f_{2,\ \text{max}}\ = \ $

 $\text{kHz}$


Solution

(1)  The distance between two adjacent samples is  $T_{\rm A} = 0.1 \ \text{ms}$.  Thus, for the sampling rate  $f_{\rm A} = 1/ T_{\rm A} \;\underline {= 10 \ \text{kHz}}$is obtained.


Spectrum  $X_{\rm A}(f)$  of the sampled signal
(schematic representation)

(2)  Proposed solutions 2 and 4 are correct:

  • The spectrum  $X_{\rm A}(f)$  of the sampled signal is obtained from  $X(f)$  by periodic continuation at a distance of  $f_{\rm A} = 10 \ \text{kHz}$.
  • From the sketch you can see that  $X_{\rm A}(f)$  can have signal parts at  $f = 2.5 \ \text{kHz}$  and  $f = 6.5 \ \text{kHz}$;.
  • In contrast, there are no components at  $f = 5.5 \ \text{kHz}$.
  • Also at  $f = 34.5 \ \text{kHz}$  will be valid  $X_{\rm A}(f) = 0$.


(3)  It must be ensured that all frequencies of the analog signal are weighted with  $H(f) = 1$.

  • From this follows according to the sketch:
$$f_{1, \ \text{min}} = B_{\rm NF} \;\underline{= 4 \ \text{kHz}}.$$


(4)  Likewise, it must be guaranteed that all spectral components of  $X_{\rm A}(f)$, that are not contained in  $X(f)$  are removed by the low-pass filter.

  • According to the sketch, the following must apply:
$$f_{2, \ \text{max}} = f_{\rm A} – B_{\rm NF} \;\underline{= 6 \ \text{kHz}}.$$