Difference between revisions of "Aufgaben:Exercise 5.1: Sampling Theorem"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=*Buch*/*Kapitel* }} 250px|right|* ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type="[]"} - Falsch +…“)
 
m (Text replacement - "Time Discrete" to "Discrete-Time")
 
(36 intermediate revisions by 7 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signal_Representation/Time_Discrete_Signal_Representation
 
}}
 
}}
  
[[File:*|250px|right|*]]
+
[[File:P_ID1126__Sig_A_5_1.png|right|frame|Sampling of an analog signal&nbsp; $x(t)$]]
  
 +
Given is an analog signal&nbsp; $x(t)$&nbsp; according to the sketch:
 +
*It is known that this signal does not contain any frequencies higher than&nbsp; $B_{\rm NF} = 4 \ \text{kHz}$.
 +
*By sampling with the sampling rate&nbsp; $f_{\rm A}$&nbsp;, the signal&nbsp; $x_{\rm A}(t)$ sketched in red in the diagram is obtained.
 +
*For signal reconstruction a low-pass filter is used, for whose frequency response applies:
 +
 +
:$$H(f)  = \left\{ \begin{array}{c} 1  \\
 +
0  \\  \end{array} \right.\quad
 +
\begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}}
 +
\\ {\rm{{\rm{f\ddot{u}r}}}}  \\ \end{array}\begin{array}{*{5}c}
 +
|f| < f_1 \hspace{0.05cm}, \\
 +
|f| > f_2  \hspace{0.05cm} \\
 +
\end{array}$$
  
===Fragebogen===
+
The range between the frequencies&nbsp; $f_1$&nbsp; and&nbsp; $f_2 > f_1$&nbsp; is not relevant for the solution of this task.
 +
 
 +
The corner frequencies&nbsp; $f_1$&nbsp; and&nbsp; $f_2$&nbsp; are to be determined in such a way that the output signal&nbsp; $y(t)$&nbsp; of the low-pass filter exactly matches the signal&nbsp; $x(t)$&nbsp;.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This task belongs to the chapter&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation|Discrete-Time Signal Representation]].
 +
 +
*There is an interactive applet for the topic dealt with here: &nbsp;[[Applets:Sampling_of_Analog_Signals_and_Signal_Reconstruction|Sampling of Analog Signals and Signal Reconstruction]]
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Determine the underlying sampling rate from the graph.
 +
|type="{}"}
 +
$f_{\rm A}\ = \ $  { 10 3% } &nbsp;$\text{kHz}$
 +
 
 +
{At which frequencies does the spectral function&nbsp;  $X_{\rm A}(f)$&nbsp; have <u>no components</u> with certainty?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- $f =  2.5 \ \text{kHz},$
+ Richtig
+
+ $f=  5.5 \ \text{kHz},$
 +
- $f=  6.5 \ \text{kHz},$
 +
+ $f=  34.5 \ \text{kHz}.$
  
 +
{What is the minimum size of the lower cut-off frequency&nbsp; $f_1$&nbsp; that the signal is perfectly reconstructed?
 +
|type="{}"}
 +
$f_{1,\ \text{min}}\ = \ ${ 4 3% } &nbsp;$\text{kHz}$
  
{Input-Box Frage
+
{What is the maximum size of the upper corner frequency&nbsp; $f_2$&nbsp; that the signal is perfectly reconstructed?
 
|type="{}"}
 
|type="{}"}
<math> \alpha = </math> { 0.3 _5 }
+
$f_{2,\ \text{max}}\ = \ ${ 6 3% } &nbsp;$\text{kHz}$
 
 
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Antwort 1
+
'''(1)'''&nbsp;  The distance between two adjacent samples is&nbsp; $T_{\rm A} = 0.1 \ \text{ms}$.&nbsp; Thus, for the sampling rate&nbsp; $f_{\rm A} = 1/ T_{\rm A} \;\underline {= 10 \ \text{kHz}}$is obtained.
 +
 
 +
 
 +
[[File:P_ID1127__Sig_A_5_1_b.png|450px|right|frame|Spectrum&nbsp; $X_{\rm A}(f)$&nbsp; of the sampled signal <br>(schematic representation)]]
 +
'''(2)'''&nbsp;  Proposed <u>solutions 2 and 4</u> are correct:
 +
*The spectrum&nbsp; $X_{\rm A}(f)$&nbsp; of the sampled signal is obtained from&nbsp; $X(f)$&nbsp; by periodic continuation at a distance of&nbsp; $f_{\rm A} =  10 \ \text{kHz}$.
 +
*From the sketch you can see that&nbsp; $X_{\rm A}(f)$&nbsp; can have signal parts at&nbsp; $f =  2.5 \ \text{kHz}$&nbsp; and&nbsp;  $f =  6.5 \ \text{kHz}$;.
 +
*In contrast, there are no components at&nbsp;  $f =  5.5 \ \text{kHz}$.
 +
*Also at&nbsp;  $f = 34.5 \ \text{kHz}$&nbsp; will be valid&nbsp; $X_{\rm A}(f) = 0$.
 +
<br clear=all>
 +
'''(3)'''&nbsp; It must be ensured that all frequencies of the analog signal are weighted with&nbsp; $H(f) = 1$.
 +
*From this follows according to the sketch:
 +
 
 +
:$$f_{1, \ \text{min}} = B_{\rm NF} \;\underline{= 4 \ \text{kHz}}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; Likewise, it must be guaranteed that all spectral components of&nbsp; $X_{\rm A}(f)$, that are not contained in&nbsp; $X(f)$&nbsp; are removed by the low-pass filter.
 +
*According to the sketch, the following must apply:
 +
 
 +
:$$f_{2, \ \text{max}} = f_{\rm A} – B_{\rm NF} \;\underline{= 6 \ \text{kHz}}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^5.1 Discrete-Time Signal Representation^]]

Latest revision as of 10:03, 11 October 2021

Sampling of an analog signal  $x(t)$

Given is an analog signal  $x(t)$  according to the sketch:

  • It is known that this signal does not contain any frequencies higher than  $B_{\rm NF} = 4 \ \text{kHz}$.
  • By sampling with the sampling rate  $f_{\rm A}$ , the signal  $x_{\rm A}(t)$ sketched in red in the diagram is obtained.
  • For signal reconstruction a low-pass filter is used, for whose frequency response applies:
$$H(f) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |f| < f_1 \hspace{0.05cm}, \\ |f| > f_2 \hspace{0.05cm} \\ \end{array}$$

The range between the frequencies  $f_1$  and  $f_2 > f_1$  is not relevant for the solution of this task.

The corner frequencies  $f_1$  and  $f_2$  are to be determined in such a way that the output signal  $y(t)$  of the low-pass filter exactly matches the signal  $x(t)$ .





Hints:


Questions

1

Determine the underlying sampling rate from the graph.

$f_{\rm A}\ = \ $

 $\text{kHz}$

2

At which frequencies does the spectral function  $X_{\rm A}(f)$  have no components with certainty?

$f = 2.5 \ \text{kHz},$
$f= 5.5 \ \text{kHz},$
$f= 6.5 \ \text{kHz},$
$f= 34.5 \ \text{kHz}.$

3

What is the minimum size of the lower cut-off frequency  $f_1$  that the signal is perfectly reconstructed?

$f_{1,\ \text{min}}\ = \ $

 $\text{kHz}$

4

What is the maximum size of the upper corner frequency  $f_2$  that the signal is perfectly reconstructed?

$f_{2,\ \text{max}}\ = \ $

 $\text{kHz}$


Solution

(1)  The distance between two adjacent samples is  $T_{\rm A} = 0.1 \ \text{ms}$.  Thus, for the sampling rate  $f_{\rm A} = 1/ T_{\rm A} \;\underline {= 10 \ \text{kHz}}$is obtained.


Spectrum  $X_{\rm A}(f)$  of the sampled signal
(schematic representation)

(2)  Proposed solutions 2 and 4 are correct:

  • The spectrum  $X_{\rm A}(f)$  of the sampled signal is obtained from  $X(f)$  by periodic continuation at a distance of  $f_{\rm A} = 10 \ \text{kHz}$.
  • From the sketch you can see that  $X_{\rm A}(f)$  can have signal parts at  $f = 2.5 \ \text{kHz}$  and  $f = 6.5 \ \text{kHz}$;.
  • In contrast, there are no components at  $f = 5.5 \ \text{kHz}$.
  • Also at  $f = 34.5 \ \text{kHz}$  will be valid  $X_{\rm A}(f) = 0$.


(3)  It must be ensured that all frequencies of the analog signal are weighted with  $H(f) = 1$.

  • From this follows according to the sketch:
$$f_{1, \ \text{min}} = B_{\rm NF} \;\underline{= 4 \ \text{kHz}}.$$


(4)  Likewise, it must be guaranteed that all spectral components of  $X_{\rm A}(f)$, that are not contained in  $X(f)$  are removed by the low-pass filter.

  • According to the sketch, the following must apply:
$$f_{2, \ \text{max}} = f_{\rm A} – B_{\rm NF} \;\underline{= 6 \ \text{kHz}}.$$