Difference between revisions of "Aufgaben:Exercise 4.9: Higher-Level Modulation"

From LNTwww
 
(3 intermediate revisions by 2 users not shown)
Line 5: Line 5:
 
[[File:EN_Inf_A_4_9.png|right|frame|Some channel capacity curves]]
 
[[File:EN_Inf_A_4_9.png|right|frame|Some channel capacity curves]]
 
The graph shows AWGN channel capacity curves over the  $10 \cdot \lg (E_{\rm S}/{N_0})$:
 
The graph shows AWGN channel capacity curves over the  $10 \cdot \lg (E_{\rm S}/{N_0})$:
* $C_\text{Gauß}$:    Shannon's boundary curve,
+
* $C_\text{Gaussian}$:    Shannon's boundary curve,
* $C_\text{BPSK}$:    valid for ''Binary Phase Shift Keying''.
+
* $C_\text{BPSK}$:    valid for  "Binary Phase Shift Keying".
 
 
 
 
The two other curves  $C_\text{rot}$  and  $C_\text{braun}$  should be analyzed and assigned to possible modulation schemes in subtasks  '''(3)'''  and  '''(4)''' .
 
 
 
  
  
 +
The two other curves  $C_\text{red}$  and  $C_\text{brown}$  should be analyzed and assigned to possible modulation schemes in subtasks  '''(3)'''  and  '''(4)'''.
  
  
Line 19: Line 16:
 
Hints:
 
Hints:
 
*The task belongs to the chapter  [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|AWGN channel capacity with discrete value input]].
 
*The task belongs to the chapter  [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|AWGN channel capacity with discrete value input]].
*Reference is made in particular to the page  [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#The_channel_capacity_.7F.27.22.60UNIQ-MathJax81-QINU.60.22.27.7F_as_a_function_of_.7F.27.22.60UNIQ-MathJax82-QINU.60.22.27.7F|The channel capacity $C$ as a function of $E_{\rm S}/{N_0}$]].  
+
*Reference is made in particular to the page  [[Information_Theory/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang#The_channel_capacity_.7F.27.22.60UNIQ-MathJax81-QINU.60.22.27.7F_as_a_function_of_.7F.27.22.60UNIQ-MathJax82-QINU.60.22.27.7F|Channel capacity  $C$  as a function of  $E_{\rm S}/{N_0}$]].  
*Since the results are to be given in "bit", "log" &nbsp;&#8658;&nbsp; "log<sub>2</sub>" is used in the equations.
+
*Since the results are to be given in&nbsp; "bit" &nbsp; &rArr; &nbsp;  "log" &nbsp;&#8658;&nbsp; "log<sub>2</sub>" is used in the equations.
*The modulation methods mentioned in the questions are described in terms of their signal space constellation:
+
*The modulation methods mentioned in the questions are described in terms of their signal space constellation&nbsp; <br>(see lower graph).
  
  
 
[[File:EN_Inf_A_4_9_Zusatz.png|right|frame|Proposed signal space constellations]]
 
[[File:EN_Inf_A_4_9_Zusatz.png|right|frame|Proposed signal space constellations]]
  
''Notes on nomenclature:'':
+
'''Notes on nomenclature:'''
*In the literature,"BPSK" is sometimes also referred to as "2&ndash;ASK"
+
*In the literature,&nbsp; "BPSK" is sometimes also referred to as&nbsp; "2&ndash;ASK":
 
:$$x &#8712; X = \{+1,\ -1\}.$$  
 
:$$x &#8712; X = \{+1,\ -1\}.$$  
*In contrast, in our learning tutorial $\rm LNTwww$ we understand as "ASK" the unipolar case
+
*In contrast,&nbsp; in our learning tutorial we understand as&nbsp; "ASK"&nbsp; the unipolar case:
 
:$$x &#8712; X = \{0,\ 1 \}.$$   
 
:$$x &#8712; X = \{0,\ 1 \}.$$   
 
*Therefore, according to our nomenclature:  
 
*Therefore, according to our nomenclature:  
:$$C_\text{AK} < C_\text{BPSK}$$  
+
:$$C_\text{ASK} < C_\text{BPSK}$$  
  
This fact is irrelevant for the solution of the present problem.
+
But:&nbsp; This fact is irrelevant for the solution of the present problem.
  
  
Line 40: Line 37:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What equation underlies the Shannon boundary curve &nbsp;$C_{\rm Gauß}$&nbsp; ?
+
{What equation underlies Shannon's boundary curve &nbsp;$C_{\rm Gaussian}$?
 
|type="[]"}
 
|type="[]"}
- &nbsp; $C_{\rm Gauß}  = C_1= {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + E_{\rm S}/{N_0})$ ,
+
- &nbsp; $C_{\rm Gaussian}  = C_1= {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + E_{\rm S}/{N_0})$ ,
+ &nbsp; $C_{\rm Gauß}  = C_2= {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + 2 \cdot E_{\rm S}/{N_0})$ ,
+
+ &nbsp; $C_{\rm Gaussian}  = C_2= {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 + 2 \cdot E_{\rm S}/{N_0})$ ,
- &nbsp; $C_{\rm Gauß}  = C_3=  {\rm log}_2 \hspace{0.1cm} ( 1 + E_{\rm S}/{N_0})$ .
+
- &nbsp; $C_{\rm Gaussian}  = C_3=  {\rm log}_2 \hspace{0.1cm} ( 1 + E_{\rm S}/{N_0})$ .
  
  
{Which statements are true for the green curve &nbsp;$C_{\rm BPSK}$&nbsp;?
+
{Which statements are true for the green curve &nbsp;$(C_{\rm BPSK})$?
 
|type="[]"}
 
|type="[]"}
 
+ $C_{\rm BPSK}$&nbsp; cannot be given in closed form.
 
+ $C_{\rm BPSK}$&nbsp; cannot be given in closed form.
 
+ $C_{\rm BPSK}$&nbsp; is greater than zero if &nbsp;$E_{\rm S}/{N_0} > 0$&nbsp; is assumed.
 
+ $C_{\rm BPSK}$&nbsp; is greater than zero if &nbsp;$E_{\rm S}/{N_0} > 0$&nbsp; is assumed.
- For &nbsp;$E_{\rm S}/{N_0} < \ln (2)$&nbsp;,&nbsp;$C_{\rm BPSK} &equiv; 0$.
+
- For &nbsp;$E_{\rm S}/{N_0} < \ln (2)$ &nbsp; &rArr; &nbsp; $C_{\rm BPSK} &equiv; 0$.
+ In the whole range &nbsp;$C_{\rm BPSK} < C_{\rm Gauß} $ is valid.
+
+ In the whole range &nbsp;$C_{\rm BPSK} < C_{\rm Gaussian} $&nbsp; is valid.
  
{Which statements are true for the red curve &nbsp;$C_{\rm rot}$&nbsp;?
+
{Which statements are true for the red curve &nbsp;$(C_{\rm red})$?
 
|type="[]"}
 
|type="[]"}
- For the associated random variable &nbsp;$X$&nbsp; gilt &nbsp;$M_X = |X| = 2$.
+
- For the associated random variable &nbsp;$X$&nbsp; holds &nbsp;$M_X = |X| = 2$.
+ For the associated random variable &nbsp;$X$&nbsp; gilt &nbsp;$M_X = |X| = 4$.
+
+ For the associated random variable &nbsp;$X$&nbsp; holds &nbsp;$M_X = |X| = 4$.
+ $C_{\rm rot}$&nbsp; is simultaneously the channel capacity of the 4&ndash;ASK.
+
+ $C_{\rm red}$&nbsp; is simultaneously the channel capacity of the&nbsp; "4&ndash;ASK".
- $C_{\rm rot}$&nbsp; is simultaneously the channel capacity of the 4&ndash;QAM.
+
- $C_{\rm red}$&nbsp; is simultaneously the channel capacity of the&nbsp; "4&ndash;QAM".
+ For all &nbsp;$E_{\rm S}/{N_0} > 0$&nbsp; &nbsp;$C_{\rm rot}$&nbsp; is between "grün" and "braun".
+
+ For all &nbsp;$E_{\rm S}/{N_0} > 0$&nbsp; &nbsp;$C_{\rm red}$&nbsp; is between "green" and "brown".
  
  
{Which statements are true for the brown curve &nbsp;$C_{\rm braun}$&nbsp; ? &nbsp;($p_{\rm B}$: &nbsp; bit error probability)
+
{Which statements are true for the brown curve &nbsp;$(C_{\rm brown})$? <br>Note:&nbsp; $p_{\rm B}$&nbsp; denotes the bit error probability here.
 
|type="[]"}
 
|type="[]"}
+ For the associated random variable &nbsp;$X$&nbsp;, &nbsp;$M_X = |X| = 8$.
+
+ For the associated random variable &nbsp;$X$ &nbsp; &rArr; &nbsp; $M_X = |X| = 8$.
+ $C_{\rm braun}$&nbsp; is simultaneously the channel capacity of the 8&ndash;ASK.
+
+ $C_{\rm brown}$&nbsp; is simultaneously the channel capacity of the&nbsp; "8&ndash;ASK".
- $C_{\rm braun}$&nbsp; is simultaneously the channel capacity of the 8&ndash;PSK.
+
- $C_{\rm brown}$&nbsp; is simultaneously the channel capacity of the&nbsp; "8&ndash;PSK".
- $p_{\rm B} &equiv; 0$&nbsp; is possible with 8&ndash;ASK,&nbsp; $R = 2.5$&nbsp; and&nbsp; $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$&nbsp;.
+
- $p_{\rm B} &equiv; 0$&nbsp; is possible with&nbsp; "8&ndash;ASK",&nbsp; $R = 2.5$&nbsp; and&nbsp; $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$.
+ $p_{\rm B} &equiv; 0$&nbsp; is possible with 8&ndash;ASK,&nbsp; $R = 2$&nbsp; and&nbsp; $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$&nbsp;.
+
+ $p_{\rm B} &equiv; 0$&nbsp; is possible with&nbsp; "8&ndash;ASK",&nbsp; $R = 2.0$&nbsp; and&nbsp; $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$&nbsp;.
  
  
Line 77: Line 74:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Proposition 2</u> is correct, as shown by the calculation for &nbsp;$10 \cdot \lg (E_{\rm S}/{N_0}) = 15 \ \rm dB$ &nbsp;&nbsp;&#8658; &nbsp; $E_{\rm S}/{N_0} = 31.62$ zeigt:
+
'''(1)'''&nbsp; <u>Proposition 2</u>&nbsp; is correct,&nbsp; as shown by the calculation for &nbsp;$10 \cdot \lg (E_{\rm S}/{N_0}) = 15 \ \rm dB$ &nbsp;&nbsp;&#8658; &nbsp; $E_{\rm S}/{N_0} = 31.62$:
:$$C_2(15\hspace{0.1cm}{\rm dB}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 +  2 \cdot 31.62 ) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 64.25 ) \approx 3\,{\rm bit/Kanalzugriff}\hspace{0.05cm}. $$
+
:$$C_2(15\hspace{0.1cm}{\rm dB}) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 1 +  2 \cdot 31.62 ) = {1}/{2} \cdot  {\rm log}_2 \hspace{0.1cm} ( 64.25 ) \approx 3\,{\rm bit/use}\hspace{0.05cm}. $$
 
*The other two proposed solutions provide the following numerical values:
 
*The other two proposed solutions provide the following numerical values:
:$$C_3(15\hspace{0.1cm}{\rm dB}) \  =  \  {\rm log}_2 \hspace{0.1cm} ( 1 +  31.62 ) \approx 5.03\,{\rm bit/Kanalzugriff}\hspace{0.05cm},$$
+
:$$C_3(15\hspace{0.1cm}{\rm dB}) \  =  \  {\rm log}_2 \hspace{0.1cm} ( 1 +  31.62 ) \approx 5.03\,{\rm bit/use}\hspace{0.05cm},$$
:$$ C_1(15\hspace{0.1cm}{\rm dB}) \  =  \  C_3/2 \approx 2.51\,{\rm bit/Kanalzugriff}\hspace{0.05cm}.$$
+
:$$ C_1(15\hspace{0.1cm}{\rm dB}) \  =  \  C_3/2 \approx 2.51\,{\rm bit/use}\hspace{0.05cm}.$$
*The proposed solution 3 corresponds to the case of ''two independent Gaussian channels'' with half transmit power per channel.
+
*The proposed solution 3 corresponds to the case of&nbsp; "two independent Gaussian channels"&nbsp; with half transmission power per channel.
 
 
 
 
 
 
 
 
'''(2)'''&nbsp;<u>Proposed solutions 1, 2 and 4</u> are correct:
 
*If one would replace &nbsp;$E_{\rm S}$&nbsp; by &nbsp;$E_{\rm B}$&nbsp;, then also the statement 3 would be correct.
 
*For &nbsp;$E_{\rm B}/{N_0} < \ln (2)$&nbsp;  &nbsp;$C_{\rm Gauß} &equiv; 0$&nbsp; is valid and therefore also &nbsp;$C_{\rm BPSK} &equiv; 0$&nbsp;.
 
 
 
 
 
 
 
  
'''(3)'''&nbsp; <u>Statements 2, 3 and 5</u> are correct::
 
*The red curve &nbsp;$C_{\rm rot}$&nbsp; is always above &nbsp;$C_{\rm BPSK}$&nbsp;, but below &nbsp;$C_{\rm braun}$&nbsp; and the Shannon boundary curve &nbsp;$C_{\rm Gauß}$.
 
*The statements also hold if for certain &nbsp;$E_{\rm S}/{N_0}$ values curves are indistinguishable within the character precision.
 
*From the limit &nbsp;$C_{\rm rot}= 2 \ \rm bit/channel use$&nbsp; for &nbsp;$E_{\rm S}/{N_0}  &#8594; &#8734;$&nbsp;, the symbol range &nbsp;$M_X = |X| = 4$.
 
*Thus, the red curve describes the 4&ndash;ASK.&nbsp; $M_X = |X| = 2$&nbsp; would apply to the BPSK.
 
*The 4&ndash;QAM leads exactly to the same final value "2 bit/channel use".&nbsp; For small &nbsp;$E_{\rm S}/{N_0}$ values, however, the channel capacity &nbsp;$C_{\rm 4&ndash;QAM}$&nbsp; is above the red curve, since &nbsp;$C_{\rm rot}$&nbsp; is bounded by the Gaussian boundary curve &nbsp;$C_2$&nbsp;, but $C_{\rm 4&ndash;QAM}$&nbsp; is bounded by &nbsp;$C_3$.
 
  
  
The designations &nbsp;$C_2$&nbsp; and &nbsp;$C_3$&nbsp; here refer to subtask&nbsp; '''(1)'''.
+
'''(2)'''&nbsp;<u>Proposed solutions 1, 2 and 4</u>&nbsp; are correct:
 +
*If one would replace &nbsp;$E_{\rm S}$&nbsp; by &nbsp;$E_{\rm B}$,&nbsp; then the statement 3 would be also correct.
 +
*For &nbsp;$E_{\rm B}/{N_0} < \ln (2)$ &nbsp; &rArr;  &nbsp; $C_{\rm Gaussian} &equiv; 0$&nbsp; is valid,&nbsp;  and therefore also &nbsp;$C_{\rm BPSK} &equiv; 0$.
  
  
  
 +
'''(3)'''&nbsp; <u>Statements 2, 3 and 5</u>&nbsp;  are correct:
 +
*The red curve &nbsp;$(C_{\rm red})$&nbsp; is always above &nbsp;$C_{\rm BPSK}$,&nbsp; but below &nbsp;$C_{\rm brown}$&nbsp; and  Shannon's boundary curve &nbsp;$(C_{\rm Gaussian})$.
 +
*The statements also hold if&nbsp;  (for certain &nbsp;$E_{\rm S}/{N_0}$ values)&nbsp;  curves are indistinguishable within the drawing precision.
 +
*From the limit &nbsp;$C_{\rm red}= 2 \ \rm bit/use$&nbsp; for &nbsp;$E_{\rm S}/{N_0}  &#8594; &#8734;$,&nbsp; the symbol set size&nbsp; $M_X = |X| = 4$.
 +
*Thus, the red curve describes&nbsp; "4&ndash;ASK".&nbsp; $M_X = |X| = 2$&nbsp; would apply to the&nbsp; "BPSK".
 +
*The&nbsp; "4&ndash;QAM" leads exactly to the same final value&nbsp; "2 bit/use".&nbsp; For small &nbsp;$E_{\rm S}/{N_0}$ values,&nbsp; however,&nbsp; the channel capacity &nbsp;$C_{\rm 4&ndash;QAM}$&nbsp; is above the red curve,&nbsp; since &nbsp;$C_{\rm red}$&nbsp; is bounded by the Gaussian boundary curve &nbsp;$(C_2)$,&nbsp; but&nbsp; $C_{\rm 4&ndash;QAM}$&nbsp; is bounded by &nbsp;$C_3$.&nbsp; The designations &nbsp;$C_2$&nbsp; and &nbsp;$C_3$&nbsp; here refer to subtask&nbsp; '''(1)''
  
 
[[File:EN_Inf_A_4_9e_v2.png|right|frame|Channel capacity limits for <br>BPSK, 4–ASK and 8–ASK]]
 
[[File:EN_Inf_A_4_9e_v2.png|right|frame|Channel capacity limits for <br>BPSK, 4–ASK and 8–ASK]]
'''(4)'''&nbsp; <u>Proposed solutions 1, 2 and 5</u> are correct:
+
<br><br>
*From the brown curve, one can see the correctness of the first two statements.
+
'''(4)'''&nbsp; <u>Proposed solutions 1, 2 and 5</u>&nbsp; are correct:
*The 8&ndash;PSK with I&ndash; and Q&ndash;components &ndash; i.e. with&nbsp; $K = 2$&nbsp; dimensions &ndash; lies slightly above the brown curve for small &nbsp;$E_{\rm S}/{N_0}$ values &nbsp; &rArr; &nbsp; the answer 3 is incorrect.
+
*From the brown curve,&nbsp; one can see the correctness of the first two statements.
 +
*The&nbsp; "8&ndash;PSK"&nbsp; with I&ndash; and Q&ndash;components &ndash; i.e. with&nbsp; $K = 2$&nbsp; dimensions &ndash; lies slightly above the brown curve for small &nbsp;$E_{\rm S}/{N_0}$&nbsp; values &nbsp; &rArr; &nbsp; the answer 3 is incorrect.
  
  
In the graph, the two 8&ndash;ASK&ndash;systems are also drawn as dots according to propositions 4 and 5.
+
In the graph, the two&nbsp; "8&ndash;ASK"nbsp; systems are also drawn as dots according to propositions 4 and 5.
* The purple dot is above the &nbsp;$C_{\rm 8&ndash;ASK}$ curve &nbsp; &#8658; &nbsp; $R = 2.5$ and $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$ are not enough to decode the 8&ndash;ASK without errors &nbsp; &#8658; &nbsp; $R > C$ &nbsp; &#8658; &nbsp; the channel coding theorem is not satisfied &nbsp; &#8658; &nbsp; answer 4 is wrong.
+
* The purple dot is above the &nbsp;$C_{\rm 8&ndash;ASK}$&nbsp; curve &nbsp; &#8658; &nbsp; $R = 2.5$ and $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$ are not enough to decode the&nbsp; "8&ndash;ASK"&nbsp; without errors &nbsp; &#8658; &nbsp; $R > C_{\rm 8&ndash;ASK}$ &nbsp; &#8658; &nbsp; channel coding theorem is not satisfied &nbsp; &#8658; &nbsp; answer 4 is wrong.
* However, if we reduce the code rate to $R = 2 < C_{\rm 8&ndash;ASK}$  according to the yellow dot for the same $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$, the channel coding theorem is satisfied  &nbsp; &#8658; &nbsp; Answer 5 is correct.
+
* However, if we reduce the code rate to&nbsp; $R = 2 < C_{\rm 8&ndash;ASK}$&nbsp; for the same&nbsp; $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$&nbsp; according to the yellow dot,&nbsp; the channel coding theorem is satisfied  &nbsp; &#8658; &nbsp; answer 5 is correct.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 15:28, 4 November 2021

Some channel capacity curves

The graph shows AWGN channel capacity curves over the  $10 \cdot \lg (E_{\rm S}/{N_0})$:

  • $C_\text{Gaussian}$:    Shannon's boundary curve,
  • $C_\text{BPSK}$:    valid for  "Binary Phase Shift Keying".


The two other curves  $C_\text{red}$  and  $C_\text{brown}$  should be analyzed and assigned to possible modulation schemes in subtasks  (3)  and  (4).



Hints:


Proposed signal space constellations

Notes on nomenclature:

  • In the literature,  "BPSK" is sometimes also referred to as  "2–ASK":
$$x ∈ X = \{+1,\ -1\}.$$
  • In contrast,  in our learning tutorial we understand as  "ASK"  the unipolar case:
$$x ∈ X = \{0,\ 1 \}.$$
  • Therefore, according to our nomenclature:
$$C_\text{ASK} < C_\text{BPSK}$$

But:  This fact is irrelevant for the solution of the present problem.


Questions

1

What equation underlies Shannon's boundary curve  $C_{\rm Gaussian}$?

  $C_{\rm Gaussian} = C_1= {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + E_{\rm S}/{N_0})$ ,
  $C_{\rm Gaussian} = C_2= {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + 2 \cdot E_{\rm S}/{N_0})$ ,
  $C_{\rm Gaussian} = C_3= {\rm log}_2 \hspace{0.1cm} ( 1 + E_{\rm S}/{N_0})$ .

2

Which statements are true for the green curve  $(C_{\rm BPSK})$?

$C_{\rm BPSK}$  cannot be given in closed form.
$C_{\rm BPSK}$  is greater than zero if  $E_{\rm S}/{N_0} > 0$  is assumed.
For  $E_{\rm S}/{N_0} < \ln (2)$   ⇒   $C_{\rm BPSK} ≡ 0$.
In the whole range  $C_{\rm BPSK} < C_{\rm Gaussian} $  is valid.

3

Which statements are true for the red curve  $(C_{\rm red})$?

For the associated random variable  $X$  holds  $M_X = |X| = 2$.
For the associated random variable  $X$  holds  $M_X = |X| = 4$.
$C_{\rm red}$  is simultaneously the channel capacity of the  "4–ASK".
$C_{\rm red}$  is simultaneously the channel capacity of the  "4–QAM".
For all  $E_{\rm S}/{N_0} > 0$   $C_{\rm red}$  is between "green" and "brown".

4

Which statements are true for the brown curve  $(C_{\rm brown})$?
Note:  $p_{\rm B}$  denotes the bit error probability here.

For the associated random variable  $X$   ⇒   $M_X = |X| = 8$.
$C_{\rm brown}$  is simultaneously the channel capacity of the  "8–ASK".
$C_{\rm brown}$  is simultaneously the channel capacity of the  "8–PSK".
$p_{\rm B} ≡ 0$  is possible with  "8–ASK",  $R = 2.5$  and  $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$.
$p_{\rm B} ≡ 0$  is possible with  "8–ASK",  $R = 2.0$  and  $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$ .


Solution

(1)  Proposition 2  is correct,  as shown by the calculation for  $10 \cdot \lg (E_{\rm S}/{N_0}) = 15 \ \rm dB$   ⇒   $E_{\rm S}/{N_0} = 31.62$:

$$C_2(15\hspace{0.1cm}{\rm dB}) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + 2 \cdot 31.62 ) = {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 64.25 ) \approx 3\,{\rm bit/use}\hspace{0.05cm}. $$
  • The other two proposed solutions provide the following numerical values:
$$C_3(15\hspace{0.1cm}{\rm dB}) \ = \ {\rm log}_2 \hspace{0.1cm} ( 1 + 31.62 ) \approx 5.03\,{\rm bit/use}\hspace{0.05cm},$$
$$ C_1(15\hspace{0.1cm}{\rm dB}) \ = \ C_3/2 \approx 2.51\,{\rm bit/use}\hspace{0.05cm}.$$
  • The proposed solution 3 corresponds to the case of  "two independent Gaussian channels"  with half transmission power per channel.


(2) Proposed solutions 1, 2 and 4  are correct:

  • If one would replace  $E_{\rm S}$  by  $E_{\rm B}$,  then the statement 3 would be also correct.
  • For  $E_{\rm B}/{N_0} < \ln (2)$   ⇒   $C_{\rm Gaussian} ≡ 0$  is valid,  and therefore also  $C_{\rm BPSK} ≡ 0$.


(3)  Statements 2, 3 and 5  are correct:

  • The red curve  $(C_{\rm red})$  is always above  $C_{\rm BPSK}$,  but below  $C_{\rm brown}$  and Shannon's boundary curve  $(C_{\rm Gaussian})$.
  • The statements also hold if  (for certain  $E_{\rm S}/{N_0}$ values)  curves are indistinguishable within the drawing precision.
  • From the limit  $C_{\rm red}= 2 \ \rm bit/use$  for  $E_{\rm S}/{N_0} → ∞$,  the symbol set size  $M_X = |X| = 4$.
  • Thus, the red curve describes  "4–ASK".  $M_X = |X| = 2$  would apply to the  "BPSK".
  • The  "4–QAM" leads exactly to the same final value  "2 bit/use".  For small  $E_{\rm S}/{N_0}$ values,  however,  the channel capacity  $C_{\rm 4–QAM}$  is above the red curve,  since  $C_{\rm red}$  is bounded by the Gaussian boundary curve  $(C_2)$,  but  $C_{\rm 4–QAM}$  is bounded by  $C_3$.  The designations  $C_2$  and  $C_3$  here refer to subtask  '(1)
Channel capacity limits for
BPSK, 4–ASK and 8–ASK



(4)  Proposed solutions 1, 2 and 5  are correct:

  • From the brown curve,  one can see the correctness of the first two statements.
  • The  "8–PSK"  with I– and Q–components – i.e. with  $K = 2$  dimensions – lies slightly above the brown curve for small  $E_{\rm S}/{N_0}$  values   ⇒   the answer 3 is incorrect.


In the graph, the two  "8–ASK"nbsp; systems are also drawn as dots according to propositions 4 and 5.

  • The purple dot is above the  $C_{\rm 8–ASK}$  curve   ⇒   $R = 2.5$ and $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$ are not enough to decode the  "8–ASK"  without errors   ⇒   $R > C_{\rm 8–ASK}$   ⇒   channel coding theorem is not satisfied   ⇒   answer 4 is wrong.
  • However, if we reduce the code rate to  $R = 2 < C_{\rm 8–ASK}$  for the same  $10 \cdot \lg (E_{\rm S}/{N_0}) = 10 \ \rm dB$  according to the yellow dot,  the channel coding theorem is satisfied   ⇒   answer 5 is correct.