Difference between revisions of "Aufgaben:Exercise 4.1: Attenuation Function"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1797__LZI_A_4_1.png|right|frame|Attenuation function and two bounds]]
+
[[File:P_ID1797__LZI_A_4_1.png|right|frame|Attenuation function per unit length   ⇒   $\alpha(f)$  and two bounds]]
 
The attenuation function per unit length   ⇒   $\alpha(f)$  – pronounced  "alpha"  – of a line indicates the attenuation related to the line length.  This quantity is determined by the primary line parameters  $R\hspace{0.05cm}'$,  $L\hspace{0.05cm}'$,  $G\hspace{0.08cm}'$ and  $C\hspace{0.08cm}'$  where the exact equation is somewhat complicated.   Therefore, two more manageable approximations have been developed:
 
The attenuation function per unit length   ⇒   $\alpha(f)$  – pronounced  "alpha"  – of a line indicates the attenuation related to the line length.  This quantity is determined by the primary line parameters  $R\hspace{0.05cm}'$,  $L\hspace{0.05cm}'$,  $G\hspace{0.08cm}'$ and  $C\hspace{0.08cm}'$  where the exact equation is somewhat complicated.   Therefore, two more manageable approximations have been developed:
 
:$$\frac{\alpha_{_{\rm I}}(f)}{\rm Np}  = {1}/{2} \cdot \left [R\hspace{0.05cm}' \cdot \sqrt{{C\hspace{0.08cm}'}/{ L\hspace{0.05cm}'} } + G\hspace{0.08cm}' \cdot \sqrt{{L\hspace{0.05cm}'}/{ C\hspace{0.08cm}'} }\hspace{0.05cm}\right ]
 
:$$\frac{\alpha_{_{\rm I}}(f)}{\rm Np}  = {1}/{2} \cdot \left [R\hspace{0.05cm}' \cdot \sqrt{{C\hspace{0.08cm}'}/{ L\hspace{0.05cm}'} } + G\hspace{0.08cm}' \cdot \sqrt{{L\hspace{0.05cm}'}/{ C\hspace{0.08cm}'} }\hspace{0.05cm}\right ]
Line 33: Line 33:
  
  
''Notes:''
+
Notes:  
 
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory|Some Results from Line Transmission Theory]].
 
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory|Some Results from Line Transmission Theory]].
 
   
 
   
Line 81: Line 81:
 
  L' = 1.8\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 
  L' = 1.8\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 
  G\hspace{0.03cm}' = 0.5\,\,{\rm µ S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 
  G\hspace{0.03cm}' = 0.5\,\,{\rm µ S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
  C\hspace{0.03cm}' = 6.7\,\,{\rm nF}/{ {\rm km}}
+
  C\hspace{0.03cm}' = 6.7\,\,{\rm nF}/{ {\rm km}}$:
\hspace{0.05cm}:$
 
 
:$$\alpha_{\rm I}(f)  =  1/2 \cdot
 
:$$\alpha_{\rm I}(f)  =  1/2 \cdot
 
  \left [2.2 \cdot \sqrt{\frac{6.7 \cdot 10^{-9}}{ 1.8 \cdot 10^{-3}} }
 
  \left [2.2 \cdot \sqrt{\frac{6.7 \cdot 10^{-9}}{ 1.8 \cdot 10^{-3}} }
Line 93: Line 92:
  
  
 
+
'''(2)'''  The bound  $α_{\rm I}(f)$  calculated in subtask  '''(1)'''  is valid only for  $f \gg f_∗$,  while the bound  $α_{\rm II}(f)$  is valid for  $f \ll f_∗$.
'''(2)'''  The bound  $α_{\rm I}(f)$  calculated in subtask '''(1)''' is valid only for  $f \gg f_∗$, while the bound  $α_{\rm II}(f)$  is valid for  $f \ll f_∗$ .
 
 
*The characteristic frequency is obtained as the intersection of the two approximations:
 
*The characteristic frequency is obtained as the intersection of the two approximations:
 
:$$\alpha_{\rm II}(f = f_{\star})  =  \sqrt{1/2 \cdot  \omega_{\star}  \cdot R' \cdot C' }\hspace{0.1cm}
 
:$$\alpha_{\rm II}(f = f_{\star})  =  \sqrt{1/2 \cdot  \omega_{\star}  \cdot R' \cdot C' }\hspace{0.1cm}
 
  \bigg |_{\omega_{\star} \hspace{0.05cm}= \hspace{0.05cm}2\pi f_{\star}} = \alpha_{\rm I}(f = f_{\star})$$
 
  \bigg |_{\omega_{\star} \hspace{0.05cm}= \hspace{0.05cm}2\pi f_{\star}} = \alpha_{\rm I}(f = f_{\star})$$
*For the copper cable with  $\text{0.6 mm}$  diameter, the following equation holds:
+
*For the copper cable with  $\text{0.6 mm}$  diameter,  the following equation holds:
 
:$$f_{\star}  =  \frac {{\alpha^2_{_{\rm I}}(f = f_{\star})}}{\pi \cdot R' \cdot C'}=
 
:$$f_{\star}  =  \frac {{\alpha^2_{_{\rm I}}(f = f_{\star})}}{\pi \cdot R' \cdot C'}=
 
     \frac {0.496^2 \, {\rm 1/km^2}}{\pi \cdot 130\,{\rm \Omega/km} \cdot 35 \cdot 10^{-9}\,{\rm s/(\Omega \cdot km)}}
 
     \frac {0.496^2 \, {\rm 1/km^2}}{\pi \cdot 130\,{\rm \Omega/km} \cdot 35 \cdot 10^{-9}\,{\rm s/(\Omega \cdot km)}}
 
\hspace{0.15cm}\underline{= 17.2\,{\rm kHz}}\hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline{= 17.2\,{\rm kHz}}\hspace{0.05cm}.$$
*In contrast, for the bronze line with diameter   $\text{5 mm}$ :
+
*In contrast,  for the bronze line with diameter  $\text{5 mm}$ :
 
:$$f_{\star}  =
 
:$$f_{\star}  =
 
     \frac {(2.25 \cdot 10^{-3})^2 }{\pi \cdot 2.2 \cdot 6.7 \cdot 10^{-9}}\,{\rm kHz}
 
     \frac {(2.25 \cdot 10^{-3})^2 }{\pi \cdot 2.2 \cdot 6.7 \cdot 10^{-9}}\,{\rm kHz}
 
\hspace{0.15cm}\underline{= 0.109\,{\rm kHz}}\hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline{= 0.109\,{\rm kHz}}\hspace{0.05cm}.$$
 
  
  
 
'''(3)'''  For the copper cable  $f_0 \ll f_∗$ holds.  
 
'''(3)'''  For the copper cable  $f_0 \ll f_∗$ holds.  
*Therefore, the approximation is  $α_{\rm II}(f)$   ⇒   "strong attenuation" should be used:
+
*Therefore,  the approximation is  $α_{\rm II}(f)$   ⇒   "strong attenuation"  should be used:
 
:$$\alpha(f = f_0)  \approx \sqrt{\pi \cdot f_0 \cdot R' \cdot C'}= \sqrt{\pi \cdot 2 \cdot 10^{3} \cdot 130 \cdot 35 \cdot 10^{-9}}
 
:$$\alpha(f = f_0)  \approx \sqrt{\pi \cdot f_0 \cdot R' \cdot C'}= \sqrt{\pi \cdot 2 \cdot 10^{3} \cdot 130 \cdot 35 \cdot 10^{-9}}
 
  \hspace{0.1cm}{\rm Np}/{ {\rm km} }
 
  \hspace{0.1cm}{\rm Np}/{ {\rm km} }
 
\hspace{0.15cm}\underline{ = 0.17 \hspace{0.1cm}{\rm Np}/{ {\rm km} }}
 
\hspace{0.15cm}\underline{ = 0.17 \hspace{0.1cm}{\rm Np}/{ {\rm km} }}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*For the bronze line, because of  $f_0 \gg f_∗$  the approximation is  $α_{\rm I}(f)$   ⇒   "weak attenuation" is more suitable, see subtask  '''(1)''':
+
*For the bronze line,  because of  $f_0 \gg f_∗$  the approximation is  $α_{\rm I}(f)$   ⇒   "weak attenuation"  is more suitable,  see subtask  '''(1)''':
 
:$$\alpha(f = f_0)   
 
:$$\alpha(f = f_0)   
 
\hspace{0.15cm}\underline{= 0.0023\hspace{0.1cm}{\rm Np}/{ {\rm km} }}
 
\hspace{0.15cm}\underline{= 0.0023\hspace{0.1cm}{\rm Np}/{ {\rm km} }}

Latest revision as of 16:38, 6 November 2021

Attenuation function per unit length   ⇒   $\alpha(f)$  and two bounds

The attenuation function per unit length   ⇒   $\alpha(f)$  – pronounced  "alpha"  – of a line indicates the attenuation related to the line length.  This quantity is determined by the primary line parameters  $R\hspace{0.05cm}'$,  $L\hspace{0.05cm}'$,  $G\hspace{0.08cm}'$ and  $C\hspace{0.08cm}'$  where the exact equation is somewhat complicated.   Therefore, two more manageable approximations have been developed:

$$\frac{\alpha_{_{\rm I}}(f)}{\rm Np} = {1}/{2} \cdot \left [R\hspace{0.05cm}' \cdot \sqrt{{C\hspace{0.08cm}'}/{ L\hspace{0.05cm}'} } + G\hspace{0.08cm}' \cdot \sqrt{{L\hspace{0.05cm}'}/{ C\hspace{0.08cm}'} }\hspace{0.05cm}\right ] \hspace{0.05cm},$$
$$\frac{\alpha_{_{\rm II}}(f)}{\rm Np} = \sqrt{1/2 \cdot \omega \cdot {R\hspace{0.05cm}' \cdot C\hspace{0.08cm}'} }\hspace{0.1cm} \bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}\hspace{0.05cm}.$$

These two approximations are shown in the graph together with the actual  $\alpha(f)$  curve.  The intersection of  $\alpha_{\rm I}(f)$  and  $\alpha_{\rm II}(f)$  gives the characteristic frequency  $f_∗$  with the following meaning:

  • For  $f \gg f_∗$  holds  $α(f) ≈ α_{\rm I}(f)$.
  • For  $f \ll f_∗$  holds  $α(f) ≈ α_{\rm II}(f)$.


These approximations are used to determine the function  $\alpha(f)$  for a message signal of frequency  $f_0 = 2 \ \rm kHz$,  whereby the following transmission media are to be considered:

  • a copper cable with  $0.6 \ \rm mm$  diameter:
$$R\hspace{0.05cm}' = 130\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm} L\hspace{0.03cm}' = 0.6\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} G\hspace{0.08cm}' = 1\,\,{\rm µ S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} C\hspace{0.08cm}' = 35\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm},$$
  • a bronze overhead line with  $5 \ \rm mm$  diameter:
$$R\hspace{0.05cm}' = 2.2\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm} L\hspace{0.03cm}' = 1.8\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} G\hspace{0.08cm}' = 0.5\,\,{\rm µ S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} C\hspace{0.08cm}' = 6.7\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm}.$$



Notes:

  • The reference unit in the above equations for  $α_{\rm I}(f)$  and  $α_{\rm II}(f)$  and thus also for the total attenuation function (per unit length)  $α(f)$  results from the fact that the magnitude frequency response is defined as  $|H(f)| = {\rm e}^{-a}$ .
  • From this follows for the attenuation  $ a = - {\rm ln} \; |H(f)|$, where the relationship via the natural logarithm is denoted by "Neper" (Np).
  • The unit of the attenuation function per unit length  $α = a/l$  is thus  "Np/km".


Questions

1

Calculate for the copper cable and the bronze cable the given approximation  $\alpha_{\rm I}$ .

${\rm Copper}\hspace{-0.1cm}:\hspace{0.2cm} \alpha_{\rm I} \ = \ $

$\ \rm Np/km$
${\rm Bronze}\hspace{-0.1cm}:\hspace{0.2cm} \alpha_{\rm I} \ = \ $

$\ \rm Np/km$

2

Specify the respective characteristic frequency  $f_*$  that bounds the ranges of validity of the two approximations.

${\rm Copper}\hspace{-0.1cm}:\hspace{0.2cm} f_* \ = \ $

$\ \rm kHz$
${\rm Bronze}\hspace{-0.1cm}:\hspace{0.2cm} f_* \ = \ $

$\ \rm kHz$

3

Using the two approximations,  give the attenuation function for frequency  $f_0 = 2 \ \rm kHz$ .

${\rm Copper}\hspace{-0.1cm}: \hspace{0.2cm} \alpha (f = f_0) \ = \ $

$\ \rm Np/km$
${\rm Bronze}\hspace{-0.1cm}:\hspace{0.2cm} \alpha (f = f_0) \ = \ $

$\ \rm Np/km$


Solution

(1)  For the copper cable,  $R\hspace{0.03cm}' = 130\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm} L' = 0.6\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} G\hspace{0.03cm}' = 1\,\,{\rm µ S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} C\hspace{0.03cm}' = 35\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm}$:

$${\alpha_{_{\rm I}}(f)} = \frac{1 \,\rm Np/km}{2} \cdot \left [130\,{\rm \Omega} \cdot \sqrt{\frac{35 \cdot 10^{-9}\,{\rm s/\Omega}}{ 0.6 \cdot 10^{-3}\,{\rm \Omega \,s}} } + 10^{-6}\,{\rm \Omega^{-1}} \cdot \sqrt{\frac{0.6 \cdot 10^{-3}\,{\rm \Omega \,s}}{ 35 \cdot 10^{-9}\,{\rm s/\Omega}} }\hspace{0.1cm}\right ] $$
$$ \Rightarrow \; \alpha_{\rm I}(f) = 1/2 \cdot \left [130 \cdot 7.638 \cdot 10^{-3}+ 10^{-6} \cdot 0.131 \cdot 10^{3}\right ] {\rm Np/km} \hspace{0.15cm}\underline{= 0.496\,{\rm Np/km}}\hspace{0.05cm}.$$

For the bronze line the result is  $R\hspace{0.03cm}' = 2.2\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm} L' = 1.8\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} G\hspace{0.03cm}' = 0.5\,\,{\rm µ S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} C\hspace{0.03cm}' = 6.7\,\,{\rm nF}/{ {\rm km}}$:

$$\alpha_{\rm I}(f) = 1/2 \cdot \left [2.2 \cdot \sqrt{\frac{6.7 \cdot 10^{-9}}{ 1.8 \cdot 10^{-3}} } + 0.5 \cdot 10^{-6} \cdot \sqrt{\frac{ 1.8 \cdot 10^{-3}} {6.7 \cdot 10^{-9}}}\hspace{0.1cm}\right ] $$
$$ \Rightarrow \; \alpha_{\rm I}(f) = \frac{1 \,\rm Np/km}{2} \cdot \big [4.244 \cdot 10^{-3}+ 0.259 \cdot 10^{-3}\big ] {\rm Np/km} \hspace{0.15cm}\underline{= 0.0023\,{\rm Np}/{ {\rm km} }}\hspace{0.05cm}.$$


(2)  The bound  $α_{\rm I}(f)$  calculated in subtask  (1)  is valid only for  $f \gg f_∗$,  while the bound  $α_{\rm II}(f)$  is valid for  $f \ll f_∗$.

  • The characteristic frequency is obtained as the intersection of the two approximations:
$$\alpha_{\rm II}(f = f_{\star}) = \sqrt{1/2 \cdot \omega_{\star} \cdot R' \cdot C' }\hspace{0.1cm} \bigg |_{\omega_{\star} \hspace{0.05cm}= \hspace{0.05cm}2\pi f_{\star}} = \alpha_{\rm I}(f = f_{\star})$$
  • For the copper cable with  $\text{0.6 mm}$  diameter,  the following equation holds:
$$f_{\star} = \frac {{\alpha^2_{_{\rm I}}(f = f_{\star})}}{\pi \cdot R' \cdot C'}= \frac {0.496^2 \, {\rm 1/km^2}}{\pi \cdot 130\,{\rm \Omega/km} \cdot 35 \cdot 10^{-9}\,{\rm s/(\Omega \cdot km)}} \hspace{0.15cm}\underline{= 17.2\,{\rm kHz}}\hspace{0.05cm}.$$
  • In contrast,  for the bronze line with diameter  $\text{5 mm}$ :
$$f_{\star} = \frac {(2.25 \cdot 10^{-3})^2 }{\pi \cdot 2.2 \cdot 6.7 \cdot 10^{-9}}\,{\rm kHz} \hspace{0.15cm}\underline{= 0.109\,{\rm kHz}}\hspace{0.05cm}.$$


(3)  For the copper cable  $f_0 \ll f_∗$ holds.

  • Therefore,  the approximation is  $α_{\rm II}(f)$   ⇒   "strong attenuation"  should be used:
$$\alpha(f = f_0) \approx \sqrt{\pi \cdot f_0 \cdot R' \cdot C'}= \sqrt{\pi \cdot 2 \cdot 10^{3} \cdot 130 \cdot 35 \cdot 10^{-9}} \hspace{0.1cm}{\rm Np}/{ {\rm km} } \hspace{0.15cm}\underline{ = 0.17 \hspace{0.1cm}{\rm Np}/{ {\rm km} }} \hspace{0.05cm}.$$
  • For the bronze line,  because of  $f_0 \gg f_∗$  the approximation is  $α_{\rm I}(f)$   ⇒   "weak attenuation"  is more suitable,  see subtask  (1):
$$\alpha(f = f_0) \hspace{0.15cm}\underline{= 0.0023\hspace{0.1cm}{\rm Np}/{ {\rm km} }} \hspace{0.05cm}.$$