Difference between revisions of "Aufgaben:Exercise 4.1: Attenuation Function"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige Ergebnisse der Leitungstheorie }} right| :Das Dämpfungsmaß…“)
 
 
(31 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1797__LZI_A_4_1.png|right|]]
+
[[File:P_ID1797__LZI_A_4_1.png|right|frame|Attenuation function per unit length   ⇒   $\alpha(f)$  and two bounds]]
:Das Dämpfungsmaß <i>&alpha;</i>(<i>f</i>) &ndash; sprich &bdquo;alpha&rdquo; &ndash; einer Leitung gibt die auf die Leitungslänge bezogene Dämpfung an. Diese Größe ist durch die Leitungsbeläge <i>R</i>', <i>L</i>', <i>G</i>' und <i>C</i>' festgelegt, wobei die exakte Gleichung etwas kompliziert ist. Daher wurden zwei leichter handhabbare Näherungen entwickelt:
+
The attenuation function per unit length &nbsp; &rArr; &nbsp; $\alpha(f)$&nbsp; &ndash; pronounced&nbsp; "alpha"&nbsp; &ndash; of a line indicates the attenuation related to the line length.&nbsp; This quantity is determined by the primary line parameters &nbsp;$R\hspace{0.05cm}'$, &nbsp;$L\hspace{0.05cm}'$, &nbsp;$G\hspace{0.08cm}'$ and &nbsp;$C\hspace{0.08cm}'$&nbsp; where the exact equation is somewhat complicated.&nbsp;&nbsp; Therefore, two more manageable approximations have been developed:
:$$\frac{\alpha_{_{\rm I}}(f)}{\rm Np}  = \frac{1}{2} \cdot \left [R' \cdot \sqrt{\frac{C'}{ L'} } + G' \cdot \sqrt{\frac{L'}{ C'} }\right ]
+
:$$\frac{\alpha_{_{\rm I}}(f)}{\rm Np}  = {1}/{2} \cdot \left [R\hspace{0.05cm}' \cdot \sqrt{{C\hspace{0.08cm}'}/{ L\hspace{0.05cm}'} } + G\hspace{0.08cm}' \cdot \sqrt{{L\hspace{0.05cm}'}/{ C\hspace{0.08cm}'} }\hspace{0.05cm}\right ]
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
:$$\frac{\alpha_{_{\rm II}}(f)}{\rm Np}  =  \sqrt{\omega  \cdot \frac{R' \hspace{0.05cm} C'}{ 2} }\hspace{0.1cm}
+
:$$\frac{\alpha_{_{\rm II}}(f)}{\rm Np}  =  \sqrt{1/2 \cdot \omega  \cdot {R\hspace{0.05cm}' \cdot C\hspace{0.08cm}'} }\hspace{0.1cm}
 
  \bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}\hspace{0.05cm}.$$
 
  \bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}\hspace{0.05cm}.$$
:Diese beiden Näherungen sind zusammen mit dem tatsächlichen Verlauf <i>&alpha;</i>(<i>f</i>) in der Grafik dargestellt. Der Schnittpunkt von <i>&alpha;</i><sub>I</sub>(<i>f</i>) und <i>&alpha;</i><sub>II</sub>(<i>f</i>) ergibt die charakteristische Frequenz <i>f</i><sub>&#8727;</sub> mit folgender Bedeutung:
+
These two approximations are shown in the graph together with the actual &nbsp;$\alpha(f)$&nbsp; curve.&nbsp; The intersection of&nbsp; $\alpha_{\rm I}(f)$&nbsp; and&nbsp; $\alpha_{\rm II}(f)$&nbsp; gives the characteristic frequency&nbsp; $f_∗$&nbsp; with the following meaning:
 +
*For &nbsp;$f \gg f_∗$&nbsp; holds &nbsp;$α(f) ≈ α_{\rm I}(f)$.
 +
*For &nbsp;$f \ll f_∗$&nbsp; holds &nbsp;$α(f) ≈ α_{\rm II}(f)$.
  
:* Für <i>f</i> >> <i>f</i><sub>&#8727;</sub> gilt <i>&alpha;</i>(<i>f</i>) &asymp; <i>&alpha;</i><sub>I</sub>(<i>f</i>).
 
  
:* Für <i>f</i> << <i>f</i><sub>&#8727;</sub> ist <i>&alpha;</i>(<i>f</i>) &asymp; <i>&alpha;</i><sub>II</sub>(<i>f</i>).
+
These approximations are used to determine the function &nbsp;$\alpha(f)$&nbsp; for a message signal of frequency &nbsp;$f_0 = 2 \ \rm kHz$,&nbsp; whereby the following transmission media are to be considered:
 +
 
 +
*a copper cable with &nbsp;$0.6 \ \rm mm$&nbsp; diameter:
 +
:$$R\hspace{0.05cm}' = 130\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
 +
L\hspace{0.03cm}' = 0.6\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 +
G\hspace{0.08cm}' = 1\,\,{\rm &micro; S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 +
C\hspace{0.08cm}' = 35\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm},$$
 +
 
 +
*a bronze overhead line with &nbsp;$5 \ \rm mm$&nbsp; diameter:
 +
:$$R\hspace{0.05cm}' = 2.2\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
 +
L\hspace{0.03cm}' = 1.8\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 +
G\hspace{0.08cm}' = 0.5\,\,{\rm &micro; S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 +
C\hspace{0.08cm}' = 6.7\,\,{\rm nF}/{ {\rm km}}
 +
\hspace{0.05cm}.$$
 +
 
  
:Mit diesen Näherungen soll das Dämpfungsmaß <i>&alpha;</i>(<i>f</i>) für ein Nachrichtensignal der Frequenz <i>f</i><sub>0</sub> = 2 kHz ermittelt werden, wobei folgende Übertragungsmedien zu betrachten sind:
 
  
:* ein Kupferkabel mit 0.6 mm Durchmesser:
 
:$$R\hspace{0.03cm}' = 130\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
 
L' = 0.6\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 
G\hspace{0.03cm}' = 1\,\,{\rm \mu S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 
C\hspace{0.03cm}' = 35\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm},$$
 
  
:* eine Bronzefreileitung mit 5 mm Durchmesser:
 
:$$R\hspace{0.03cm}' = 2.2\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
 
L' = 1.8\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 
G\hspace{0.03cm}' = 0.5\,\,{\rm \mu S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 
C\hspace{0.03cm}' = 6.7\,\,{\rm nF}/{ {\rm km}}
 
\hspace{0.05cm}.$$
 
  
:Die Aufgabe gehört zum Themenkomplex von Kapitel 4.1.
+
Notes:  
 +
*The exercise belongs to the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory|Some Results from Line Transmission Theory]].
 +
 +
*The reference unit in the above equations for &nbsp;$α_{\rm I}(f)$&nbsp; and &nbsp;$α_{\rm II}(f)$&nbsp; and thus also for the total attenuation function (per unit length) &nbsp;$α(f)$&nbsp; results from the fact that the magnitude frequency response is defined as &nbsp;$|H(f)| = {\rm e}^{-a}$&nbsp;.
 +
*From this follows for the attenuation &nbsp;$ a = - {\rm ln} \; |H(f)|$, where the relationship via the natural logarithm is denoted by "Neper" (Np).
 +
*The unit of the attenuation function per unit length &nbsp;$α = a/l$&nbsp; is thus&nbsp; "Np/km".
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Schranke <i>&alpha;</i><sub>I</sub>  für das Kupfer&ndash; und das Bronzekabel.
+
{Calculate for the copper cable and the bronze cable the given approximation &nbsp;$\alpha_{\rm I}$ .
 
|type="{}"}
 
|type="{}"}
$Kupfer,\ 0.6\ mm:\ \alpha_I $ = { 0.496 3% } $Np/km$
+
${\rm Copper}\hspace{-0.1cm}:\hspace{0.2cm} \alpha_{\rm I} \ = \ $ { 0.496 3% } $\ \rm Np/km$
$Bronze,\ 5\ mm:\ \alpha_I $ = { 2.25 3% } $\cdot 10^{-3}\ Np/km$
+
${\rm Bronze}\hspace{-0.1cm}:\hspace{0.2cm} \alpha_{\rm I} \ = \ $ { 0.0023 3% } $\ \rm Np/km$
  
  
{Geben Sie die charakteristische Frequenz <i>f</i><sub>&#8727;</sub> an, die die Gültigkeitsbereiche der beiden Näherungen begrenzt.
+
{Specify the respective characteristic frequency &nbsp;$f_*$&nbsp; that bounds the ranges of validity of the two approximations.
 
|type="{}"}
 
|type="{}"}
$Kupfer,\ 0.6\ mm:\ f_&#8727; $ = { 17.2 3% } $kHz$
+
${\rm Copper}\hspace{-0.1cm}:\hspace{0.2cm} f_* \ = \ $ { 17.2 3% } $\ \rm kHz$
$Bronze,\ 5\ mm:\ f_&#8727; $ = { 0.109 3% } $kHz$
+
${\rm Bronze}\hspace{-0.1cm}:\hspace{0.2cm} f_* \ = \ $ { 0.109 3% } $\ \rm kHz$
  
  
{Input-Box Frage
+
{Using the two approximations,&nbsp; give the attenuation function for frequency &nbsp;$f_0 = 2 \ \rm kHz$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$Kupfer,\ 0.6\ mm:\ \alpha (f = f_0) $ = { 0.17 3% } $Np/km$
+
${\rm Copper}\hspace{-0.1cm}: \hspace{0.2cm} \alpha (f = f_0) \ = \ $ { 0.17 3% } $\ \rm Np/km$
$Bronze,\ 5\ mm:\ \alpha (f = f_0) $ = { 2.25 3% } $\cdot 10^{-3}\ Np/km$
+
${\rm Bronze}\hspace{-0.1cm}:\hspace{0.2cm} \alpha (f = f_0) \ = \ $ { 0.0023 3% } $\ \rm  Np/km$
  
  
Line 57: Line 65:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; For the copper cable, &nbsp;$R\hspace{0.03cm}' = 130\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
'''2.'''
+
L' = 0.6\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
'''3.'''
+
G\hspace{0.03cm}' = 1\,\,{\rm &micro; S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
'''4.'''
+
C\hspace{0.03cm}' = 35\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm}$:
'''5.'''
+
:$${\alpha_{_{\rm I}}(f)}  =  \frac{1 \,\rm Np/km}{2} \cdot
'''6.'''
+
\left [130\,{\rm \Omega} \cdot \sqrt{\frac{35 \cdot 10^{-9}\,{\rm s/\Omega}}{ 0.6 \cdot 10^{-3}\,{\rm \Omega \,s}} }
'''7.'''
+
+ 10^{-6}\,{\rm \Omega^{-1}} \cdot \sqrt{\frac{0.6 \cdot 10^{-3}\,{\rm \Omega \,s}}{ 35 \cdot 10^{-9}\,{\rm s/\Omega}} }\hspace{0.1cm}\right
 +
]  $$
 +
:$$ \Rightarrow \;  \alpha_{\rm I}(f)  =  1/2 \cdot
 +
\left [130 \cdot 7.638 \cdot 10^{-3}+ 10^{-6} \cdot 0.131 \cdot 10^{3}\right
 +
] {\rm Np/km}  \hspace{0.15cm}\underline{= 0.496\,{\rm Np/km}}\hspace{0.05cm}.$$
 +
For the bronze line the result is &nbsp;$R\hspace{0.03cm}' = 2.2\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
 +
L' = 1.8\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 +
G\hspace{0.03cm}' = 0.5\,\,{\rm &micro; S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm}
 +
C\hspace{0.03cm}' = 6.7\,\,{\rm nF}/{ {\rm km}}$:
 +
:$$\alpha_{\rm I}(f)  =  1/2 \cdot
 +
\left [2.2 \cdot \sqrt{\frac{6.7 \cdot 10^{-9}}{ 1.8 \cdot 10^{-3}} }
 +
+ 0.5 \cdot 10^{-6} \cdot \sqrt{\frac{ 1.8 \cdot 10^{-3}} {6.7 \cdot 10^{-9}}}\hspace{0.1cm}\right
 +
] $$
 +
:$$ \Rightarrow \;  \alpha_{\rm I}(f)  =  \frac{1 \,\rm Np/km}{2} \cdot
 +
\big [4.244 \cdot 10^{-3}+  0.259 \cdot 10^{-3}\big
 +
] {\rm Np/km}
 +
\hspace{0.15cm}\underline{= 0.0023\,{\rm Np}/{ {\rm km} }}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; The bound &nbsp;$α_{\rm I}(f)$&nbsp; calculated in subtask&nbsp; '''(1)'''&nbsp; is valid only for &nbsp;$f \gg f_∗$,&nbsp; while the bound &nbsp;$α_{\rm II}(f)$&nbsp; is valid for &nbsp;$f \ll f_∗$.
 +
*The characteristic frequency is obtained as the intersection of the two approximations:
 +
:$$\alpha_{\rm II}(f = f_{\star})  =  \sqrt{1/2 \cdot  \omega_{\star}  \cdot R' \cdot C' }\hspace{0.1cm}
 +
\bigg |_{\omega_{\star} \hspace{0.05cm}= \hspace{0.05cm}2\pi f_{\star}} = \alpha_{\rm I}(f = f_{\star})$$
 +
*For the copper cable with&nbsp; $\text{0.6 mm}$&nbsp; diameter,&nbsp; the following equation holds:
 +
:$$f_{\star}  =  \frac {{\alpha^2_{_{\rm I}}(f = f_{\star})}}{\pi \cdot R' \cdot C'}=
 +
    \frac {0.496^2 \, {\rm 1/km^2}}{\pi \cdot 130\,{\rm \Omega/km} \cdot 35 \cdot 10^{-9}\,{\rm s/(\Omega \cdot km)}}
 +
\hspace{0.15cm}\underline{= 17.2\,{\rm kHz}}\hspace{0.05cm}.$$
 +
*In contrast,&nbsp; for the bronze line with diameter&nbsp; $\text{5 mm}$&nbsp;:
 +
:$$f_{\star}  =
 +
    \frac {(2.25 \cdot 10^{-3})^2 }{\pi \cdot 2.2 \cdot 6.7 \cdot 10^{-9}}\,{\rm kHz}
 +
\hspace{0.15cm}\underline{= 0.109\,{\rm kHz}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; For the copper cable &nbsp;$f_0 \ll f_∗$ holds.  
 +
*Therefore,&nbsp; the approximation is &nbsp;$α_{\rm II}(f)$ &nbsp; &rArr; &nbsp; "strong attenuation"&nbsp; should be used:
 +
:$$\alpha(f = f_0)  \approx \sqrt{\pi \cdot f_0 \cdot R' \cdot C'}= \sqrt{\pi \cdot 2 \cdot 10^{3} \cdot 130 \cdot 35 \cdot 10^{-9}}
 +
\hspace{0.1cm}{\rm Np}/{ {\rm km} }
 +
\hspace{0.15cm}\underline{ = 0.17 \hspace{0.1cm}{\rm Np}/{ {\rm km} }}
 +
\hspace{0.05cm}.$$
 +
*For the bronze line,&nbsp; because of &nbsp;$f_0 \gg f_∗$&nbsp; the approximation is &nbsp;$α_{\rm I}(f)$ &nbsp; &rArr; &nbsp; "weak attenuation"&nbsp; is more suitable,&nbsp; see subtask&nbsp; '''(1)''':
 +
:$$\alpha(f = f_0) 
 +
\hspace{0.15cm}\underline{= 0.0023\hspace{0.1cm}{\rm Np}/{ {\rm km} }}
 +
\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.1 Einige Ergebnisse der Leitungstheorie^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.1 Results of Line Transmission Theory^]]

Latest revision as of 16:38, 6 November 2021

Attenuation function per unit length   ⇒   $\alpha(f)$  and two bounds

The attenuation function per unit length   ⇒   $\alpha(f)$  – pronounced  "alpha"  – of a line indicates the attenuation related to the line length.  This quantity is determined by the primary line parameters  $R\hspace{0.05cm}'$,  $L\hspace{0.05cm}'$,  $G\hspace{0.08cm}'$ and  $C\hspace{0.08cm}'$  where the exact equation is somewhat complicated.   Therefore, two more manageable approximations have been developed:

$$\frac{\alpha_{_{\rm I}}(f)}{\rm Np} = {1}/{2} \cdot \left [R\hspace{0.05cm}' \cdot \sqrt{{C\hspace{0.08cm}'}/{ L\hspace{0.05cm}'} } + G\hspace{0.08cm}' \cdot \sqrt{{L\hspace{0.05cm}'}/{ C\hspace{0.08cm}'} }\hspace{0.05cm}\right ] \hspace{0.05cm},$$
$$\frac{\alpha_{_{\rm II}}(f)}{\rm Np} = \sqrt{1/2 \cdot \omega \cdot {R\hspace{0.05cm}' \cdot C\hspace{0.08cm}'} }\hspace{0.1cm} \bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}\hspace{0.05cm}.$$

These two approximations are shown in the graph together with the actual  $\alpha(f)$  curve.  The intersection of  $\alpha_{\rm I}(f)$  and  $\alpha_{\rm II}(f)$  gives the characteristic frequency  $f_∗$  with the following meaning:

  • For  $f \gg f_∗$  holds  $α(f) ≈ α_{\rm I}(f)$.
  • For  $f \ll f_∗$  holds  $α(f) ≈ α_{\rm II}(f)$.


These approximations are used to determine the function  $\alpha(f)$  for a message signal of frequency  $f_0 = 2 \ \rm kHz$,  whereby the following transmission media are to be considered:

  • a copper cable with  $0.6 \ \rm mm$  diameter:
$$R\hspace{0.05cm}' = 130\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm} L\hspace{0.03cm}' = 0.6\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} G\hspace{0.08cm}' = 1\,\,{\rm µ S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} C\hspace{0.08cm}' = 35\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm},$$
  • a bronze overhead line with  $5 \ \rm mm$  diameter:
$$R\hspace{0.05cm}' = 2.2\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm} L\hspace{0.03cm}' = 1.8\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} G\hspace{0.08cm}' = 0.5\,\,{\rm µ S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} C\hspace{0.08cm}' = 6.7\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm}.$$



Notes:

  • The reference unit in the above equations for  $α_{\rm I}(f)$  and  $α_{\rm II}(f)$  and thus also for the total attenuation function (per unit length)  $α(f)$  results from the fact that the magnitude frequency response is defined as  $|H(f)| = {\rm e}^{-a}$ .
  • From this follows for the attenuation  $ a = - {\rm ln} \; |H(f)|$, where the relationship via the natural logarithm is denoted by "Neper" (Np).
  • The unit of the attenuation function per unit length  $α = a/l$  is thus  "Np/km".


Questions

1

Calculate for the copper cable and the bronze cable the given approximation  $\alpha_{\rm I}$ .

${\rm Copper}\hspace{-0.1cm}:\hspace{0.2cm} \alpha_{\rm I} \ = \ $

$\ \rm Np/km$
${\rm Bronze}\hspace{-0.1cm}:\hspace{0.2cm} \alpha_{\rm I} \ = \ $

$\ \rm Np/km$

2

Specify the respective characteristic frequency  $f_*$  that bounds the ranges of validity of the two approximations.

${\rm Copper}\hspace{-0.1cm}:\hspace{0.2cm} f_* \ = \ $

$\ \rm kHz$
${\rm Bronze}\hspace{-0.1cm}:\hspace{0.2cm} f_* \ = \ $

$\ \rm kHz$

3

Using the two approximations,  give the attenuation function for frequency  $f_0 = 2 \ \rm kHz$ .

${\rm Copper}\hspace{-0.1cm}: \hspace{0.2cm} \alpha (f = f_0) \ = \ $

$\ \rm Np/km$
${\rm Bronze}\hspace{-0.1cm}:\hspace{0.2cm} \alpha (f = f_0) \ = \ $

$\ \rm Np/km$


Solution

(1)  For the copper cable,  $R\hspace{0.03cm}' = 130\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm} L' = 0.6\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} G\hspace{0.03cm}' = 1\,\,{\rm µ S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} C\hspace{0.03cm}' = 35\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm}$:

$${\alpha_{_{\rm I}}(f)} = \frac{1 \,\rm Np/km}{2} \cdot \left [130\,{\rm \Omega} \cdot \sqrt{\frac{35 \cdot 10^{-9}\,{\rm s/\Omega}}{ 0.6 \cdot 10^{-3}\,{\rm \Omega \,s}} } + 10^{-6}\,{\rm \Omega^{-1}} \cdot \sqrt{\frac{0.6 \cdot 10^{-3}\,{\rm \Omega \,s}}{ 35 \cdot 10^{-9}\,{\rm s/\Omega}} }\hspace{0.1cm}\right ] $$
$$ \Rightarrow \; \alpha_{\rm I}(f) = 1/2 \cdot \left [130 \cdot 7.638 \cdot 10^{-3}+ 10^{-6} \cdot 0.131 \cdot 10^{3}\right ] {\rm Np/km} \hspace{0.15cm}\underline{= 0.496\,{\rm Np/km}}\hspace{0.05cm}.$$

For the bronze line the result is  $R\hspace{0.03cm}' = 2.2\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm} L' = 1.8\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} G\hspace{0.03cm}' = 0.5\,\,{\rm µ S}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} C\hspace{0.03cm}' = 6.7\,\,{\rm nF}/{ {\rm km}}$:

$$\alpha_{\rm I}(f) = 1/2 \cdot \left [2.2 \cdot \sqrt{\frac{6.7 \cdot 10^{-9}}{ 1.8 \cdot 10^{-3}} } + 0.5 \cdot 10^{-6} \cdot \sqrt{\frac{ 1.8 \cdot 10^{-3}} {6.7 \cdot 10^{-9}}}\hspace{0.1cm}\right ] $$
$$ \Rightarrow \; \alpha_{\rm I}(f) = \frac{1 \,\rm Np/km}{2} \cdot \big [4.244 \cdot 10^{-3}+ 0.259 \cdot 10^{-3}\big ] {\rm Np/km} \hspace{0.15cm}\underline{= 0.0023\,{\rm Np}/{ {\rm km} }}\hspace{0.05cm}.$$


(2)  The bound  $α_{\rm I}(f)$  calculated in subtask  (1)  is valid only for  $f \gg f_∗$,  while the bound  $α_{\rm II}(f)$  is valid for  $f \ll f_∗$.

  • The characteristic frequency is obtained as the intersection of the two approximations:
$$\alpha_{\rm II}(f = f_{\star}) = \sqrt{1/2 \cdot \omega_{\star} \cdot R' \cdot C' }\hspace{0.1cm} \bigg |_{\omega_{\star} \hspace{0.05cm}= \hspace{0.05cm}2\pi f_{\star}} = \alpha_{\rm I}(f = f_{\star})$$
  • For the copper cable with  $\text{0.6 mm}$  diameter,  the following equation holds:
$$f_{\star} = \frac {{\alpha^2_{_{\rm I}}(f = f_{\star})}}{\pi \cdot R' \cdot C'}= \frac {0.496^2 \, {\rm 1/km^2}}{\pi \cdot 130\,{\rm \Omega/km} \cdot 35 \cdot 10^{-9}\,{\rm s/(\Omega \cdot km)}} \hspace{0.15cm}\underline{= 17.2\,{\rm kHz}}\hspace{0.05cm}.$$
  • In contrast,  for the bronze line with diameter  $\text{5 mm}$ :
$$f_{\star} = \frac {(2.25 \cdot 10^{-3})^2 }{\pi \cdot 2.2 \cdot 6.7 \cdot 10^{-9}}\,{\rm kHz} \hspace{0.15cm}\underline{= 0.109\,{\rm kHz}}\hspace{0.05cm}.$$


(3)  For the copper cable  $f_0 \ll f_∗$ holds.

  • Therefore,  the approximation is  $α_{\rm II}(f)$   ⇒   "strong attenuation"  should be used:
$$\alpha(f = f_0) \approx \sqrt{\pi \cdot f_0 \cdot R' \cdot C'}= \sqrt{\pi \cdot 2 \cdot 10^{3} \cdot 130 \cdot 35 \cdot 10^{-9}} \hspace{0.1cm}{\rm Np}/{ {\rm km} } \hspace{0.15cm}\underline{ = 0.17 \hspace{0.1cm}{\rm Np}/{ {\rm km} }} \hspace{0.05cm}.$$
  • For the bronze line,  because of  $f_0 \gg f_∗$  the approximation is  $α_{\rm I}(f)$   ⇒   "weak attenuation"  is more suitable,  see subtask  (1):
$$\alpha(f = f_0) \hspace{0.15cm}\underline{= 0.0023\hspace{0.1cm}{\rm Np}/{ {\rm km} }} \hspace{0.05cm}.$$