Difference between revisions of "Aufgaben:Exercise 4.1Z: Transmission Behavior of Short Cables"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige Ergebnisse der Leitungstheorie }} right| :Wir gehen von einer…“)
 
 
(24 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige Ergebnisse der Leitungstheorie
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory
 
}}
 
}}
  
[[File:P_ID1798__LZI_Z_4_1.png|right|]]
+
[[File:EN_LZI_Z_4_1.png|right|frame|Short line section]]
:Wir gehen von einer homogenen und reflektionsfrei abgeschlossenen Leitung der Länge <i>l</i> aus, so dass für die Spektralfunktion am Ausgang gilt:
+
We assume a homogeneous and reflection-free terminated line of length&nbsp; $l$&nbsp; so that the following applies to the spectral function at the output:
 
:$$U_2(f)  =  U_1(f) \cdot  {\rm e}^{-\hspace{0.02cm}\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l}  \hspace{0.05cm}.$$
 
:$$U_2(f)  =  U_1(f) \cdot  {\rm e}^{-\hspace{0.02cm}\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l}  \hspace{0.05cm}.$$
:Hierbei beschreibt <i>&gamma;</i>(<i>f</i>) das Übertragungsmaß einer extrem kurzen Leitung der infinitesimalen Länge <i>dx</i>, das mit den Belägen <i>R</i>', <i>L</i>', <i>G</i>' und <i>C</i>' (siehe Grafik) wie folgt dargestellt werden kann:
+
Here &nbsp;$\gamma(f)$&nbsp; describes the&nbsp; '''complex propagation function'''&nbsp; of an extremely short line of infinitesimal length &nbsp;$dx$,&nbsp; which can be represented with the parameters &nbsp;$R\hspace{0.05cm}'$, &nbsp;$L\hspace{0.05cm}'$, &nbsp;$G\hspace{0.08cm}'$ and &nbsp;$C\hspace{0.08cm}'$ (see diagram) as follows:
:$$\gamma(f)  =  \sqrt{(R' + {\rm j}  \cdot 2\pi f \cdot  L')  \cdot  (G' + {\rm j}  \cdot  2\pi f \cdot  C')} =
+
:$$\gamma(f)  =  \sqrt{(R\hspace{0.05cm}' + {\rm j}  \cdot 2\pi f \cdot  L\hspace{0.05cm}')  \cdot  (G\hspace{0.08cm}' + {\rm j}  \cdot  2\pi f \cdot  C\hspace{0.08cm}')} =
 
  \alpha (f) + {\rm j}  \cdot \beta (f)\hspace{0.05cm}.$$
 
  \alpha (f) + {\rm j}  \cdot \beta (f)\hspace{0.05cm}.$$
:Der Realteil von <i>&gamma;</i>(<i>f</i>) ergibt das Dämpfungsmaß <i>&alpha;</i>(<i>f</i>), der Imaginärteil das Phasenmaß <i>&beta;</i>(<i>f</i>). Nach einiger Rechnung kann man für diese Größen schreiben:
+
The real part of &nbsp;$\gamma(f)$&nbsp; results in
:$$\alpha(f)  =  \sqrt{\frac {1}{2}\cdot \left (R' G' - \omega^2 \cdot L'  C'\right)+
+
*The real part of &nbsp;$\gamma(f)$&nbsp; results in the attenuation function&nbsp;$\alpha(f)$&nbsp; (per unit length).
\frac {1}{2}\sqrt{(R'^2 + \omega^2 \cdot L'^2) \cdot (G'^2 + \omega^2 \cdot C'^2)}}
+
*The imaginary part of &nbsp;$\gamma(f)$&nbsp; results in the phase function &nbsp;$\beta(f)$ (per unit length).  
  \hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
+
 
 +
 
 +
After some calculation one can write for these sizes:
 +
:$$\alpha(f)  =  \sqrt{{1}/{2}\cdot \left (R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' - \omega^2 \cdot L\hspace{0.05cm}\cdot C\hspace{0.08cm}'\right)+
 +
  {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}}
 +
  \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
 
  f},$$
 
  f},$$
:$$\beta(f)  =  \sqrt{\frac {1}{2}\cdot \left (-R' G' + \omega^2 \cdot L'  C'\right)+
+
:$$\beta(f)  =  \sqrt{{1}/{2}\cdot \left (-R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' + \omega^2 \cdot L\hspace{0.05cm}'  C\hspace{0.08cm}'\right)+
\frac {1}{2}\sqrt{(R'^2 + \omega^2 \cdot L'^2) \cdot (G'^2 + \omega^2 \cdot C'^2)}}
+
  {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}}
  \hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
+
  \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
:Beim Dämpfungsmaß ist zusätzlich die Pseudoeinheit &bdquo;Neper (Np)&rdquo; hinzuzufügen und beim Phasenmaß &bdquo;Radian (rad)&rdquo;. Da die Leitungsbeläge jeweils auf die Leitungslänge bezogen sind, weisen <i>&alpha;</i>(<i>f</i>) bzw. <i>&beta;</i>(<i>f</i>) die Einheiten &bdquo;Np/km&rdquo; bzw. &bdquo;rad/km&rdquo; auf.
+
 
 +
*For the attenuation function &nbsp;$a(f)$&nbsp; the pseudo unit&nbsp; "Neper"&nbsp; (Np)&nbsp; has to be added additionally and for the phase function &nbsp;$b(f)$&nbsp; "Radian"&nbsp; (rad). &nbsp;  
 +
*Since the primary line parameters are each related to the line length, &nbsp;$\alpha(f)$&nbsp; and &nbsp;$\beta(f)$&nbsp; have the units&nbsp; "Np/km"&nbsp; and&nbsp; "rad/km",&nbsp; respectively.
 +
 
 +
 
 +
Another important descriptive quantity besides &nbsp;$\gamma(f)$&nbsp; is the&nbsp; '''wave impedance''' &nbsp;$Z_{\rm W}(f)$,&nbsp; which gives the relationship between voltage and current of the two running waves at each location.&nbsp; It holds:
 +
:$$Z_{\rm W}(f)  =  \sqrt{\frac {R\hspace{0.05cm}' + {\rm j}  \cdot \omega  L\hspace{0.05cm}'}{G\hspace{0.08cm}' + {\rm j}  \cdot \omega  C\hspace{0.08cm}'}}
 +
\hspace{0.1cm}\bigg |_{\hspace{0.05cm} \omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
 +
 
 +
 
 +
 
 +
 
  
:Eine weitere wichtige Beschreibungsgröße neben <i>&gamma;</i>(<i>f</i>) ist der Wellenwiderstand <i>Z</i><sub>W</sub>(<i>f</i>), der an jedem Ort den Zusammenhang zwischen Spannung und Strom der beiden laufenden Wellen angibt. Es gilt:
+
Notes:  
:$$Z_{\rm W}(f)  =  \sqrt{\frac {R' + {\rm j}  \cdot \omega  L'}{G' + {\rm j}  \cdot \omega C'}}
+
*The exercise belongs to the chapter&nbsp;   [[Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory|Some Results from Line Transmission Theory]].
\hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
+
   
:<b>Hinweis:</b> Die Aufgabe gehört zum Themengebiet von Kapitel 4.1. Verwenden Sie für die numerischen Berechnungen jeweils die Zahlenwerte
+
*Use the following values for the numerical calculations:
:$$R\hspace{0.03cm}' = 100\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
+
:$$R\hspace{0.05cm}' = 100\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
  G\hspace{0.03cm}' = 1\,\,{\rm \mu S}/{ {\rm km}}\hspace{0.05cm},\hspace{0.3cm}
+
  G\hspace{0.08cm}' = 1\,\,{\rm &micro; S}/{ {\rm km}}\hspace{0.05cm},\hspace{0.3cm}
  2\pi  L' = 2\,\,{\rm mH}/{ {\rm km}}  \hspace{0.05cm},\hspace{0.3cm}
+
  2\pi  L\hspace{0.03cm}' = 2\,\,{\rm mH}/{ {\rm km}}  \hspace{0.05cm},\hspace{0.3cm}
  2\pi  C\hspace{0.03cm}' = 200\,\,{\rm nF}/{ {\rm km}}
+
  2\pi  C\hspace{0.08cm}' = 200\,\,{\rm nF}/{ {\rm km}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Specify &nbsp;$\alpha(f)$, &nbsp;$\beta(f)$ and &nbsp;$Z_{\rm W}(f)$&nbsp; for frequency &nbsp;$f = 0$&nbsp; ("direct current").
|type="[]"}
+
|type="{}"}
- Falsch
+
$\alpha(f =0) \ =$  { 0.01 3% } $\ \rm Np/km$
+ Richtig
+
$\beta(f = 0) \ =$ { 0. } $\ \rm rad/km$
 +
$Z_{\rm W}(f = 0) \ =$  { 10000 3% } $\ \rm  \Omega$
  
  
{Input-Box Frage
+
{Calculate the attenuation function &nbsp;$\alpha(f)$&nbsp; (per unit length)&nbsp; for &nbsp;$f = 100\ \rm  kHz$.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$\alpha(f = 100\ \rm  kHz) \ = \ $  { 0.486 3% } $\ \rm Np/km$
 +
 
 +
 
 +
{Give the approximations of &nbsp;$Z_{\rm W}(f)$&nbsp; and &nbsp;$\alpha(f)$,&nbsp; valid for &nbsp;$f &#8594; \infty$&nbsp;.
 +
|type="{}"}
 +
$ Z_{\rm W}(f &#8594; \infty) \ = \ $  { 100 3% } $\ \rm \Omega$
 +
$\alpha(f &#8594; \infty) \ = \ $ { 0.5 3% } $\ \rm Np/km$
 +
 
 +
 
 +
{Use &nbsp;$\omega L\hspace{0.03cm}' \ll R\hspace{0.05cm}'$&nbsp; and  &nbsp;$\omega C\hspace{0.08cm}' \gg G\hspace{0.08cm}'$&nbsp; to derive an &nbsp;$\alpha(f)$&nbsp;  approximation for&nbsp; (not too)&nbsp; small frequencies. <br>What is the attenuation function per unit length for &nbsp;$ f = 1 \ \rm kHz$&nbsp; and &nbsp;$ f = 4 \ \rm kHz$?
 +
|type="{}"}
 +
$\alpha(f = 1\  \rm kHz) \ = \ $  { 0.1 3% } $\ \rm Np/km$
 +
$\alpha(f = 4\  \rm kHz) \ = \ $ { 0.2 3% } $\ \rm Np/km$
 +
 
 +
 
 +
{For the same frequency range,&nbsp; give a suitable approximation for the wave impedance &nbsp;$Z_{\rm W}(f)$&nbsp;. <br>What value results for &nbsp;$ f = 1 \ \rm kHz$?
 +
|type="{}"}
 +
${\rm Re}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ =  \ $ { 500 3% } $\ \rm \Omega$
 +
${\rm Im}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ = \  $ { -515--485 } $\ \rm \Omega$
  
  
Line 47: Line 84:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; If you insert the frequency&nbsp; $f = 0$&nbsp; into the given equations, we obtain
'''2.'''
+
:$$\alpha(f = 0)    =  [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{{1}/{2}\hspace{-0.03cm}\cdot \hspace{-0.03cm}  R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm}  G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm}
'''3.'''
+
G\hspace{0.03cm}'} =  [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm}  \sqrt{ R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm}  G\hspace{0.03cm}'} =  [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm}  \sqrt{ 100\,{\rm \Omega/km} \hspace{-0.03cm}\cdot \hspace{-0.03cm}  10^{-6}\,{\rm (\Omega \hspace{-0.03cm}\cdot \hspace{-0.03cm}  km})^{-1}}
'''4.'''
+
\hspace{0.15cm}\underline{= 0.01\,{\rm Np}/{ {\rm km}}
'''5.'''
+
}\hspace{0.05cm},$$
'''6.'''
+
:$$\beta(f = 0)  =  [1\,{\rm rad}] \cdot \sqrt{-{1}/{2}\cdot R\hspace{0.03cm}' \cdot G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \cdot
'''7.'''
+
G\hspace{0.03cm}'} \hspace{0.15cm}\underline{=  0 }\hspace{0.05cm},$$
 +
:$$Z_{\rm W}(f = 0)  =  \sqrt{\frac {R\hspace{0.03cm}'}{G\hspace{0.03cm}'}} =  \sqrt{\frac {100\,{\rm \Omega/km}}{{\rm 10^{-6}/(\Omega \cdot km})}}\hspace{0.15cm}\underline{=  10\, {\rm
 +
k \Omega}}\hspace{0.05cm}.$$
 +
 
 +
The DC signal attenuation becomes relevant,
 +
*if the useful signal is to be transmitted in the baseband and has a DC component,&nbsp; or
 +
*if the network termination at the participant must be supplied with power from the local exchange&nbsp; ("remote power supply").
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; With&nbsp; $f = 10^{5} \ \rm  Hz$&nbsp; and the specified values,&nbsp; the following holds:
 +
:$$f \cdot  2\pi  L'  =  10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot
 +
10^{-3}\,\frac{\rm \Omega \cdot s}{ {\rm km}}= 200 \,\frac{\rm
 +
\Omega
 +
}{ {\rm km}} \hspace{0.05cm},\hspace{1.05cm}
 +
f \cdot  2\pi  C'  =  10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot
 +
10^{-7}\,\frac{\rm  s}{ {\rm \Omega \cdot km}}= 0.02
 +
\,\frac{\rm 1 }{ {\rm \Omega \cdot km}} \hspace{0.05cm}.$$
 +
This results in the following for the attenuation function in "Np/km":
 +
:$$\alpha(f = 100\,{\rm kHz})
 +
=  \sqrt{ {1}/{2}\cdot \left (100 \cdot 10^{-6} - 200 \cdot 0.02 \right)+
 +
  {1}/{2} \cdot  \sqrt{(100^2 + 200^2) \cdot (10^{-12} + 0.02^2)}} $$
 +
:$$ \Rightarrow \; \;  \alpha(f = 100\,{\rm kHz}) \approx  \sqrt{{1}/{2}\cdot \left (10^{-4} - 4 \right)+
 +
{1}/{2}\cdot \sqrt{5 \cdot 10^{4} \cdot 4 \cdot 10^{-4}}} \approx \sqrt {-2 + \frac{\sqrt{20}}{
 +
2}} \hspace{0.15cm}\underline{\approx 0.486 \ {\rm Np/km}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; The limit for&nbsp; $f  &#8594; \infty$&nbsp; results if one neglects the second terms in the numerator&nbsp; $R\hspace{0.03cm}'$&nbsp; and in the denominator&nbsp; $G\hspace{0.08cm}'$&nbsp;:
 +
:$$\lim_{f \rightarrow \infty} \hspace{0.1cm} Z_{\rm W}(f)
 +
= \lim_{\omega \rightarrow \infty} \hspace{0.1cm}  \sqrt{\frac {R\hspace{0.03cm}' + {\rm j}  \cdot \omega L'}{G' + {\rm j}  \cdot \omega  C\hspace{0.03cm}'}}
 +
=\sqrt{\frac {2 \pi L\hspace{0.03cm}' }{2 \pi C\hspace{0.03cm}'}}=\sqrt{\frac {2 \cdot 10^{-3}\,{\rm \Omega \cdot s} }
 +
{2 \cdot 10^{-73}\,{\rm s/\Omega} }} \hspace{0.15cm}\underline{= 100\,{\rm \Omega }}\hspace{0.05cm}.$$
 +
*The approximation for the attenuation function is more difficult to derive.&nbsp; Starting from
 +
:$$\alpha(\omega)  =  \sqrt{ {1}/{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}'  C\hspace{0.03cm}'\right)+
 +
  {1}/{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot C\hspace{0.03cm}\hspace{0.03cm}'^2)}}$$
 +
:then also the following applies:
 +
:$$2 \cdot \alpha^2(\omega)    =  R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L'
 +
C'\cdot
 +
\left [-1 +\sqrt{(1 + \frac{R\hspace{0.03cm}'^2}{ \omega^2 \cdot L\hspace{0.03cm}'^2}) \cdot (1 + \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2})} \hspace{0.1cm}
 +
\right]$$
 +
:$$\Rightarrow \; \; 2 \cdot \alpha^2(\omega)      \approx  R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L'
 +
C\hspace{0.03cm}'\cdot
 +
\left [-1 +\sqrt{1 + \frac{R'^2}{ \omega^2 \cdot L'^2}+ \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2}} \hspace{0.1cm}
 +
\right].$$
 +
*Using the approximation&nbsp; $\sqrt{1 + x}\approx 1+x/2$&nbsp; valid for small&nbsp; $x$,&nbsp; one arrives at the intermediate result for (infinitely) large frequencies:
 +
:$$2 \cdot \alpha^2(\omega \rightarrow \infty)    =  R\hspace{0.03cm}' G\hspace{0.05cm}' + \omega^2 \cdot L'
 +
C\hspace{0.05cm}'\cdot
 +
\left [ -1 +1 + {1}/{2} \cdot  \left ( \frac{R\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2}+ \frac{G\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2}
 +
\right) \hspace{0.1cm}
 +
\right]  $$
 +
:$$\Rightarrow \hspace{0.3cm}  2  \cdot \alpha^2(\omega \rightarrow \infty) =  \frac{2 \cdot  R\hspace{0.03cm}'  G\hspace{0.03cm}'  C\hspace{0.03cm}'  L'+ R\hspace{0.03cm}'\hspace{0.03cm}^2  C\hspace{0.03cm}'\hspace{0.03cm}^2+
 +
  G\hspace{0.03cm}'\hspace{0.03cm}^2  L\hspace{0.03cm}'\hspace{0.03cm}^2}{2 \cdot C\hspace{0.03cm}'  L\hspace{0.03cm}'
 +
  }=  \frac{(R\hspace{0.03cm}'  C\hspace{0.03cm}' + G\hspace{0.03cm}'  L\hspace{0.03cm}')^2}{2 \cdot C\hspace{0.03cm}'  L\hspace{0.03cm}' }$$
 +
:$$\Rightarrow \hspace{0.3cm} \alpha(\omega \rightarrow \infty)  =
 +
  {1}/{2}\cdot \frac{R\hspace{0.03cm}' C\hspace{0.03cm}' + G\hspace{0.03cm}'  L\hspace{0.03cm}'}{\sqrt{ C\hspace{0.03cm}' L\hspace{0.03cm}' }}=
 +
  {1}/{2}\cdot \left [R\hspace{0.03cm}' \cdot \sqrt{\frac{C\hspace{0.03cm}'}{L\hspace{0.03cm}'}}+G\hspace{0.03cm}' \cdot \sqrt{\frac{L\hspace{0.03cm}'}{C\hspace{0.03cm}'}}\right]\hspace{0.05cm}.$$
 +
*With the numerical values inserted,&nbsp; we get
 +
:$$\alpha(f \rightarrow \infty)  =  \alpha(\omega \rightarrow \infty)
 +
=  {0.5\,{\rm Np/km}}\cdot \left [100 \cdot \sqrt{\frac{2 \cdot 10^{-7}}{2 \cdot10^{-3}}}+10^{-6} \cdot
 +
  \sqrt{\frac{2 \cdot10^{-3}}{2 \cdot10^{-7}}}\right]
 +
\hspace{0.15cm}\underline{\approx 0.5 \, {\rm Np}/{\rm km}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; For small frequencies, &nbsp;$\omega L\hspace{0.03cm}' \ll R\hspace{0.03cm}'$&nbsp; and &nbsp;$ \omega C\hspace{0.03cm}' \gg G\hspace{0.03cm}'$ apply.
 +
*Neglecting the&nbsp; $\omega^2$&ndash;part, one obtains:
 +
:$$\alpha(f)    =  \sqrt{\frac {1}{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}'  C\hspace{0.03cm}'\right)+
 +
\frac {1}{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2+ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2)}}
 +
\hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
 +
f}$$
 +
:$$ \Rightarrow \hspace{0.3cm} \alpha(f)    \approx  \sqrt{\frac {R\hspace{0.03cm}' G\hspace{0.03cm}'}{2}+
 +
\frac {R\hspace{0.03cm}' \cdot \omega C\hspace{0.03cm}'}{2}}
 +
\hspace{0.1cm}\bigg |_{\hspace{0.03cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
 +
f} \approx \sqrt{
 +
  {1}/{2} \cdot f \cdot R\hspace{0.03cm}' \cdot 2 \pi C\hspace{0.03cm}'}
 +
\hspace{0.05cm}.$$
 +
*Here it is considered that the first part can be neglected according to subtask&nbsp; '''(1)'''&nbsp; except for the frequency&nbsp; $f = 0$&nbsp;.
 +
*For the frequency&nbsp; $f = 1 \ \rm kHz$&nbsp; we get the approximation
 +
:$$\alpha(f = 1\,{\rm kHz})  = \sqrt{
 +
  {1}/{2} \cdot 10^{3}\,{\rm Hz} \cdot 100\,\frac{\rm \Omega }{ {\rm km}} \cdot 2 \cdot 10^{-7}
 +
\,\frac{\rm s }{ {\rm \Omega \cdot km}}}
 +
\hspace{0.15cm}\underline{= 0.1\,{\rm Np }/{ {\rm km}}}
 +
\hspace{0.05cm}.$$
 +
*For frequency&nbsp; $f = 4 \ \rm kHz$&nbsp; the attenuation function per unit length is twice as large:
 +
:$$\alpha(f = 4\,{\rm kHz})  \hspace{0.15cm}\underline{ = 0.2\,{\rm Np }/{ {\rm km}}}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; The wave impedance at low frequencies is approximated by:
 +
:$$Z_{\rm W}(f)  =  \sqrt{\frac {R\hspace{0.03cm}' + {\rm j}  \cdot f \cdot 2 \pi  L\hspace{0.03cm}'}{G\hspace{0.03cm}' + {\rm j}    \cdot f \cdot 2 \pi  C\hspace{0.03cm}'}}
 +
\approx \sqrt\frac{1 }{  {\rm j}} \cdot \sqrt{\frac {R\hspace{0.03cm}' }{  f \cdot 2 \pi
 +
C\hspace{0.03cm}'}}= (1 - {\rm j})\cdot \sqrt{\frac {R\hspace{0.03cm}' }{  2 \cdot f \cdot 2 \pi
 +
C\hspace{0.03cm}'}}\hspace{0.05cm}.$$
 +
*With the specified line fittings we obtain:
 +
:$${\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}  =  \sqrt{\frac {100\,{\rm \Omega/km }}{  2 \cdot 10^{3}\,{\rm Hz} \cdot 2 \cdot 10^{-7}
 +
\,{\rm s/(\Omega \cdot km) }}} \hspace{0.15cm}\underline{= 500\,{\rm
 +
\Omega}}\hspace{0.05cm},$$
 +
:$$ {\rm Im}\{Z_{\rm W}(f= 1\,{\rm kHz})\} =  -{\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}\hspace{0.15cm}\underline{= -500\,{\rm
 +
\Omega}}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.1 Einige Ergebnisse der Leitungstheorie^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.1 Results of Line Transmission Theory^]]

Latest revision as of 16:14, 9 November 2021

Short line section

We assume a homogeneous and reflection-free terminated line of length  $l$  so that the following applies to the spectral function at the output:

$$U_2(f) = U_1(f) \cdot {\rm e}^{-\hspace{0.02cm}\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l} \hspace{0.05cm}.$$

Here  $\gamma(f)$  describes the  complex propagation function  of an extremely short line of infinitesimal length  $dx$,  which can be represented with the parameters  $R\hspace{0.05cm}'$,  $L\hspace{0.05cm}'$,  $G\hspace{0.08cm}'$ and  $C\hspace{0.08cm}'$ (see diagram) as follows:

$$\gamma(f) = \sqrt{(R\hspace{0.05cm}' + {\rm j} \cdot 2\pi f \cdot L\hspace{0.05cm}') \cdot (G\hspace{0.08cm}' + {\rm j} \cdot 2\pi f \cdot C\hspace{0.08cm}')} = \alpha (f) + {\rm j} \cdot \beta (f)\hspace{0.05cm}.$$

The real part of  $\gamma(f)$  results in

  • The real part of  $\gamma(f)$  results in the attenuation function $\alpha(f)$  (per unit length).
  • The imaginary part of  $\gamma(f)$  results in the phase function  $\beta(f)$ (per unit length).


After some calculation one can write for these sizes:

$$\alpha(f) = \sqrt{{1}/{2}\cdot \left (R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' - \omega^2 \cdot L\hspace{0.05cm}' \cdot C\hspace{0.08cm}'\right)+ {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f},$$
$$\beta(f) = \sqrt{{1}/{2}\cdot \left (-R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' + \omega^2 \cdot L\hspace{0.05cm}' C\hspace{0.08cm}'\right)+ {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
  • For the attenuation function  $a(f)$  the pseudo unit  "Neper"  (Np)  has to be added additionally and for the phase function  $b(f)$  "Radian"  (rad).  
  • Since the primary line parameters are each related to the line length,  $\alpha(f)$  and  $\beta(f)$  have the units  "Np/km"  and  "rad/km",  respectively.


Another important descriptive quantity besides  $\gamma(f)$  is the  wave impedance  $Z_{\rm W}(f)$,  which gives the relationship between voltage and current of the two running waves at each location.  It holds:

$$Z_{\rm W}(f) = \sqrt{\frac {R\hspace{0.05cm}' + {\rm j} \cdot \omega L\hspace{0.05cm}'}{G\hspace{0.08cm}' + {\rm j} \cdot \omega C\hspace{0.08cm}'}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm} \omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$



Notes:

  • Use the following values for the numerical calculations:
$$R\hspace{0.05cm}' = 100\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm} G\hspace{0.08cm}' = 1\,\,{\rm µ S}/{ {\rm km}}\hspace{0.05cm},\hspace{0.3cm} 2\pi L\hspace{0.03cm}' = 2\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} 2\pi C\hspace{0.08cm}' = 200\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm}.$$



Questions

1

Specify  $\alpha(f)$,  $\beta(f)$ and  $Z_{\rm W}(f)$  for frequency  $f = 0$  ("direct current").

$\alpha(f =0) \ =$

$\ \rm Np/km$
$\beta(f = 0) \ =$

$\ \rm rad/km$
$Z_{\rm W}(f = 0) \ =$

$\ \rm \Omega$

2

Calculate the attenuation function  $\alpha(f)$  (per unit length)  for  $f = 100\ \rm kHz$.

$\alpha(f = 100\ \rm kHz) \ = \ $

$\ \rm Np/km$

3

Give the approximations of  $Z_{\rm W}(f)$  and  $\alpha(f)$,  valid for  $f → \infty$ .

$ Z_{\rm W}(f → \infty) \ = \ $

$\ \rm \Omega$
$\alpha(f → \infty) \ = \ $

$\ \rm Np/km$

4

Use  $\omega L\hspace{0.03cm}' \ll R\hspace{0.05cm}'$  and  $\omega C\hspace{0.08cm}' \gg G\hspace{0.08cm}'$  to derive an  $\alpha(f)$  approximation for  (not too)  small frequencies.
What is the attenuation function per unit length for  $ f = 1 \ \rm kHz$  and  $ f = 4 \ \rm kHz$?

$\alpha(f = 1\  \rm kHz) \ = \ $

$\ \rm Np/km$
$\alpha(f = 4\ \rm kHz) \ = \ $

$\ \rm Np/km$

5

For the same frequency range,  give a suitable approximation for the wave impedance  $Z_{\rm W}(f)$ .
What value results for  $ f = 1 \ \rm kHz$?

${\rm Re}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ = \ $

$\ \rm \Omega$
${\rm Im}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ = \ $

$\ \rm \Omega$


Solution

(1)  If you insert the frequency  $f = 0$  into the given equations, we obtain

$$\alpha(f = 0) = [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{{1}/{2}\hspace{-0.03cm}\cdot \hspace{-0.03cm} R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm} G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm} G\hspace{0.03cm}'} = [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{ R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm} G\hspace{0.03cm}'} = [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{ 100\,{\rm \Omega/km} \hspace{-0.03cm}\cdot \hspace{-0.03cm} 10^{-6}\,{\rm (\Omega \hspace{-0.03cm}\cdot \hspace{-0.03cm} km})^{-1}} \hspace{0.15cm}\underline{= 0.01\,{\rm Np}/{ {\rm km}} }\hspace{0.05cm},$$
$$\beta(f = 0) = [1\,{\rm rad}] \cdot \sqrt{-{1}/{2}\cdot R\hspace{0.03cm}' \cdot G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \cdot G\hspace{0.03cm}'} \hspace{0.15cm}\underline{= 0 }\hspace{0.05cm},$$
$$Z_{\rm W}(f = 0) = \sqrt{\frac {R\hspace{0.03cm}'}{G\hspace{0.03cm}'}} = \sqrt{\frac {100\,{\rm \Omega/km}}{{\rm 10^{-6}/(\Omega \cdot km})}}\hspace{0.15cm}\underline{= 10\, {\rm k \Omega}}\hspace{0.05cm}.$$

The DC signal attenuation becomes relevant,

  • if the useful signal is to be transmitted in the baseband and has a DC component,  or
  • if the network termination at the participant must be supplied with power from the local exchange  ("remote power supply").


(2)  With  $f = 10^{5} \ \rm Hz$  and the specified values,  the following holds:

$$f \cdot 2\pi L' = 10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot 10^{-3}\,\frac{\rm \Omega \cdot s}{ {\rm km}}= 200 \,\frac{\rm \Omega }{ {\rm km}} \hspace{0.05cm},\hspace{1.05cm} f \cdot 2\pi C' = 10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot 10^{-7}\,\frac{\rm s}{ {\rm \Omega \cdot km}}= 0.02 \,\frac{\rm 1 }{ {\rm \Omega \cdot km}} \hspace{0.05cm}.$$

This results in the following for the attenuation function in "Np/km":

$$\alpha(f = 100\,{\rm kHz}) = \sqrt{ {1}/{2}\cdot \left (100 \cdot 10^{-6} - 200 \cdot 0.02 \right)+ {1}/{2} \cdot \sqrt{(100^2 + 200^2) \cdot (10^{-12} + 0.02^2)}} $$
$$ \Rightarrow \; \; \alpha(f = 100\,{\rm kHz}) \approx \sqrt{{1}/{2}\cdot \left (10^{-4} - 4 \right)+ {1}/{2}\cdot \sqrt{5 \cdot 10^{4} \cdot 4 \cdot 10^{-4}}} \approx \sqrt {-2 + \frac{\sqrt{20}}{ 2}} \hspace{0.15cm}\underline{\approx 0.486 \ {\rm Np/km}} \hspace{0.05cm}.$$


(3)  The limit for  $f → \infty$  results if one neglects the second terms in the numerator  $R\hspace{0.03cm}'$  and in the denominator  $G\hspace{0.08cm}'$ :

$$\lim_{f \rightarrow \infty} \hspace{0.1cm} Z_{\rm W}(f) = \lim_{\omega \rightarrow \infty} \hspace{0.1cm} \sqrt{\frac {R\hspace{0.03cm}' + {\rm j} \cdot \omega L'}{G' + {\rm j} \cdot \omega C\hspace{0.03cm}'}} =\sqrt{\frac {2 \pi L\hspace{0.03cm}' }{2 \pi C\hspace{0.03cm}'}}=\sqrt{\frac {2 \cdot 10^{-3}\,{\rm \Omega \cdot s} } {2 \cdot 10^{-73}\,{\rm s/\Omega} }} \hspace{0.15cm}\underline{= 100\,{\rm \Omega }}\hspace{0.05cm}.$$
  • The approximation for the attenuation function is more difficult to derive.  Starting from
$$\alpha(\omega) = \sqrt{ {1}/{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}' C\hspace{0.03cm}'\right)+ {1}/{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot C\hspace{0.03cm}\hspace{0.03cm}'^2)}}$$
then also the following applies:
$$2 \cdot \alpha^2(\omega) = R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L' C'\cdot \left [-1 +\sqrt{(1 + \frac{R\hspace{0.03cm}'^2}{ \omega^2 \cdot L\hspace{0.03cm}'^2}) \cdot (1 + \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2})} \hspace{0.1cm} \right]$$
$$\Rightarrow \; \; 2 \cdot \alpha^2(\omega) \approx R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L' C\hspace{0.03cm}'\cdot \left [-1 +\sqrt{1 + \frac{R'^2}{ \omega^2 \cdot L'^2}+ \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2}} \hspace{0.1cm} \right].$$
  • Using the approximation  $\sqrt{1 + x}\approx 1+x/2$  valid for small  $x$,  one arrives at the intermediate result for (infinitely) large frequencies:
$$2 \cdot \alpha^2(\omega \rightarrow \infty) = R\hspace{0.03cm}' G\hspace{0.05cm}' + \omega^2 \cdot L' C\hspace{0.05cm}'\cdot \left [ -1 +1 + {1}/{2} \cdot \left ( \frac{R\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2}+ \frac{G\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2} \right) \hspace{0.1cm} \right] $$
$$\Rightarrow \hspace{0.3cm} 2 \cdot \alpha^2(\omega \rightarrow \infty) = \frac{2 \cdot R\hspace{0.03cm}' G\hspace{0.03cm}' C\hspace{0.03cm}' L'+ R\hspace{0.03cm}'\hspace{0.03cm}^2 C\hspace{0.03cm}'\hspace{0.03cm}^2+ G\hspace{0.03cm}'\hspace{0.03cm}^2 L\hspace{0.03cm}'\hspace{0.03cm}^2}{2 \cdot C\hspace{0.03cm}' L\hspace{0.03cm}' }= \frac{(R\hspace{0.03cm}' C\hspace{0.03cm}' + G\hspace{0.03cm}' L\hspace{0.03cm}')^2}{2 \cdot C\hspace{0.03cm}' L\hspace{0.03cm}' }$$
$$\Rightarrow \hspace{0.3cm} \alpha(\omega \rightarrow \infty) = {1}/{2}\cdot \frac{R\hspace{0.03cm}' C\hspace{0.03cm}' + G\hspace{0.03cm}' L\hspace{0.03cm}'}{\sqrt{ C\hspace{0.03cm}' L\hspace{0.03cm}' }}= {1}/{2}\cdot \left [R\hspace{0.03cm}' \cdot \sqrt{\frac{C\hspace{0.03cm}'}{L\hspace{0.03cm}'}}+G\hspace{0.03cm}' \cdot \sqrt{\frac{L\hspace{0.03cm}'}{C\hspace{0.03cm}'}}\right]\hspace{0.05cm}.$$
  • With the numerical values inserted,  we get
$$\alpha(f \rightarrow \infty) = \alpha(\omega \rightarrow \infty) = {0.5\,{\rm Np/km}}\cdot \left [100 \cdot \sqrt{\frac{2 \cdot 10^{-7}}{2 \cdot10^{-3}}}+10^{-6} \cdot \sqrt{\frac{2 \cdot10^{-3}}{2 \cdot10^{-7}}}\right] \hspace{0.15cm}\underline{\approx 0.5 \, {\rm Np}/{\rm km}}\hspace{0.05cm}.$$


(4)  For small frequencies,  $\omega L\hspace{0.03cm}' \ll R\hspace{0.03cm}'$  and  $ \omega C\hspace{0.03cm}' \gg G\hspace{0.03cm}'$ apply.

  • Neglecting the  $\omega^2$–part, one obtains:
$$\alpha(f) = \sqrt{\frac {1}{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}' C\hspace{0.03cm}'\right)+ \frac {1}{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2+ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2)}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}$$
$$ \Rightarrow \hspace{0.3cm} \alpha(f) \approx \sqrt{\frac {R\hspace{0.03cm}' G\hspace{0.03cm}'}{2}+ \frac {R\hspace{0.03cm}' \cdot \omega C\hspace{0.03cm}'}{2}} \hspace{0.1cm}\bigg |_{\hspace{0.03cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f} \approx \sqrt{ {1}/{2} \cdot f \cdot R\hspace{0.03cm}' \cdot 2 \pi C\hspace{0.03cm}'} \hspace{0.05cm}.$$
  • Here it is considered that the first part can be neglected according to subtask  (1)  except for the frequency  $f = 0$ .
  • For the frequency  $f = 1 \ \rm kHz$  we get the approximation
$$\alpha(f = 1\,{\rm kHz}) = \sqrt{ {1}/{2} \cdot 10^{3}\,{\rm Hz} \cdot 100\,\frac{\rm \Omega }{ {\rm km}} \cdot 2 \cdot 10^{-7} \,\frac{\rm s }{ {\rm \Omega \cdot km}}} \hspace{0.15cm}\underline{= 0.1\,{\rm Np }/{ {\rm km}}} \hspace{0.05cm}.$$
  • For frequency  $f = 4 \ \rm kHz$  the attenuation function per unit length is twice as large:
$$\alpha(f = 4\,{\rm kHz}) \hspace{0.15cm}\underline{ = 0.2\,{\rm Np }/{ {\rm km}}} \hspace{0.05cm}.$$


(5)  The wave impedance at low frequencies is approximated by:

$$Z_{\rm W}(f) = \sqrt{\frac {R\hspace{0.03cm}' + {\rm j} \cdot f \cdot 2 \pi L\hspace{0.03cm}'}{G\hspace{0.03cm}' + {\rm j} \cdot f \cdot 2 \pi C\hspace{0.03cm}'}} \approx \sqrt\frac{1 }{ {\rm j}} \cdot \sqrt{\frac {R\hspace{0.03cm}' }{ f \cdot 2 \pi C\hspace{0.03cm}'}}= (1 - {\rm j})\cdot \sqrt{\frac {R\hspace{0.03cm}' }{ 2 \cdot f \cdot 2 \pi C\hspace{0.03cm}'}}\hspace{0.05cm}.$$
  • With the specified line fittings we obtain:
$${\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\} = \sqrt{\frac {100\,{\rm \Omega/km }}{ 2 \cdot 10^{3}\,{\rm Hz} \cdot 2 \cdot 10^{-7} \,{\rm s/(\Omega \cdot km) }}} \hspace{0.15cm}\underline{= 500\,{\rm \Omega}}\hspace{0.05cm},$$
$$ {\rm Im}\{Z_{\rm W}(f= 1\,{\rm kHz})\} = -{\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}\hspace{0.15cm}\underline{= -500\,{\rm \Omega}}\hspace{0.05cm}.$$